
FRAFOS ABC SBC Handbook
Release 5.3

FRAFOS GmbH

Sep 09, 2024

Contents

1 About the ABC Session Border Controller 1
1.1 How to Start? . 2
1.2 Credits . 3

2 Release Notes 4
2.1 Release Notes for ABC SBC version 5.3 . 4
2.2 Release Notes for ABC Monitor version 5.3 . 4

3 Introduction 6
3.1 A Brief Introduction to History and Architecture of SIP . 6
3.2 What is a Session Border Controller (SBC)? . 9

3.2.1 General Behavior of SBCs . 9
3.2.2 General Deployment Scenarios of SBCs . 11

3.3 Do You Need an SBC? . 12
3.4 ABC SBC Networking Concepts . 13

3.4.1 Network Topology . 13
3.4.2 SBC Interfaces . 13
3.4.3 Call Agents . 14
3.4.4 Realms . 14
3.4.5 A-B-C rules . 14

4 Practical Guide to the ABC SBC 18
4.1 Network Planning Guidelines . 18

4.1.1 Topology Model . 18
4.1.2 SBC Logic . 20
4.1.3 Security Policies . 22
4.1.4 Capacity planning . 23
4.1.5 IT Integration . 24

4.2 Planning Checklists . 25
4.3 A Typical SBC Configuration Example . 27

4.3.1 Identifying Network topology . 27
4.3.2 Describing ABC SBC Realms and Call Agents . 28
4.3.3 Configuring Registration Cache and Throttling . 31
4.3.4 SIP Routing . 33
4.3.5 Configuring NAT Handling and Media Anchoring . 36
4.3.6 Configuring transparent dialog IDs . 38
4.3.7 Setting up tracing . 39
4.3.8 Summary of rules . 40
4.3.9 Setting Call Limits . 40
4.3.10 Blacklisting specific IPs and User Agents . 42
4.3.11 Handling P-Asserted-Identity . 43
4.3.12 Where to go from here . 44

5 Installing the ABC SBC 45
5.1 Types of Installations: Container and Cloud-based . 45
5.2 Hardware Requirements . 45
5.3 Deployment Modes . 46

i

5.3.1 Single Node Mode . 46
5.3.2 High Available (HA) Pair Mode . 46
5.3.3 Cluster based solution . 46

5.4 Installation Procedure . 46
5.5 Installation Procedure - systemd container ABC SBC install . 47

5.5.1 Unpack the container image . 48
5.5.2 Prepare directory for persistent data . 48
5.5.3 Create container systemd config file . 48
5.5.4 Optional: configure container network interface(s) . 49
5.5.5 Manage the containers . 49
5.5.6 Managing the containers under CentOS 7 . 50

5.6 Installation Procedure - podman containers . 51
5.6.1 Installing podman . 51
5.6.2 OCI images download . 51
5.6.3 Networking . 52
5.6.4 Persistent data . 53
5.6.5 Container management . 54
5.6.6 Upgrade Procedure . 55
5.6.7 Systemd integration . 56

5.7 Initial Configuration . 57
5.7.1 SBC Interfaces Overview . 57
5.7.2 Web GUI Configuration (Cluster Config Master) . 57

5.8 Setting Up Web Interface Access and User Accounts . 59
5.8.1 Default User Accounts . 59

5.9 ABC SBC License . 59
5.10 Interface Configuration . 61

5.10.1 Physical and System Interfaces . 61
5.10.2 SBC Interfaces . 62
5.10.3 Retro Compatibility . 64

5.11 TLS profiles Configuration . 66
5.11.1 TLS profile options . 66
5.11.2 Certificate requirements . 66
5.11.3 Let’s encrypt gocertbot . 67

5.12 Hardware Specific Configurations . 70
5.12.1 Network adapters . 71
5.12.2 Configuration of SBC Number of Threads . 71
5.12.3 Configuration of sysctl settings . 72

5.13 Last ABC SBC Installation Steps . 72
5.14 ABC Monitor Installation (optional) . 73

5.14.1 ABC Monitor recommended server configuration . 73
5.15 ABC Monitor Container Installation . 74

5.15.1 ABC Monitor Initial Configuration . 74
5.16 ABC Monitor LDAP Installation (optional) . 76
5.17 ABC Monitor Installation Off AWS (optional) . 77

6 General ABC Configuration Guide 79
6.1 Physical, System and SBC Interfaces . 79
6.2 Defining Rules . 80

6.2.1 Condition Types . 81
6.2.2 Condition Operators . 83
6.2.3 Condition Values and Regular Expressions . 84
6.2.4 Actions . 85
6.2.5 Additional rule properties . 85

6.3 Using Replacements in Rules . 86
6.3.1 Example Use of Replacement Expressions . 89

6.4 Using Regular Expression Backreferences in Rules . 90
6.5 Binding Rules together with Call Variables . 91
6.6 SIP Routing . 93

ii

6.6.1 Routing Rules (B) . 93
6.6.2 Static Routes . 95
6.6.3 Table-based Dynamic Routes . 96
6.6.4 Request-URI Based Routes . 98
6.6.5 Determination of the IP destination and Next-hop Load-Balancing 99
6.6.6 IP Blacklisting: Adaptive Availability Management . 102
6.6.7 SIP Routing by Example . 104

6.7 View A-B-C rules . 108
6.8 SIP Mediation . 108

6.8.1 Why is SIP Mediation Needed? . 109
6.8.2 Request-URI Modifications . 110
6.8.3 Changing Identity . 111
6.8.4 SIP Header Processing . 112
6.8.5 Early Media, Ring Back Tone and Forking . 114
6.8.6 Call transfers . 116
6.8.7 INVITE with Replaces handling . 117
6.8.8 Mapping Dialog-IDs in INVITEs with Replaces . 117
6.8.9 Other mediation actions . 117

6.9 SDP Mediation . 118
6.9.1 Codec Signaling . 119
6.9.2 Media Type Filtering . 119
6.9.3 CODEC Filtering . 120
6.9.4 CODEC Preference . 121
6.9.5 SDP Bandwidth attribute limiting . 122

6.10 Media Handling . 123
6.10.1 Introduction . 123
6.10.2 Media Anchoring (RTP Relay) . 124
6.10.3 RTP and SRTP Interworking . 127
6.10.4 SRTP End to End encryption . 127
6.10.5 Transcoding . 127
6.10.6 Audio Recording . 128
6.10.7 Playing Audio Announcements . 130
6.10.8 Onboard Conferencing . 131

6.11 NAT Traversal . 134
6.11.1 NAT Traversal Configuration Example . 136

6.12 Registration Caching and Handling . 138
6.12.1 Registration Handling Configuration Options . 139
6.12.2 Registrar off-load . 142
6.12.3 Registration Caching and Handling by Example . 143
6.12.4 Registration Agent . 147

6.13 Call Data Records (CDRs) . 149
6.13.1 CDRs Location . 149
6.13.2 CDR Format . 149
6.13.3 Access to CDRs . 150
6.13.4 Customized CDR Records . 150

6.14 Advanced Use Cases with Provisioned Data . 151
6.14.1 RESTful Interface . 152
6.14.2 Provisioned Tables . 155
6.14.3 ENUM Queries . 166

6.15 SIP-WebRTC Gateway . 167
6.15.1 WebRTC Network Architecture and Protocols . 169
6.15.2 WebRTC Network Configuration . 171
6.15.3 WebRTC Credentials Configuration . 173
6.15.4 WebRTC Rules Configuration . 174
6.15.5 WebRTC Interoperability Recommendations . 178

6.16 Amazon Elastic Cloud Configuration Cookbook . 179
6.16.1 Before you Start: Prerequisites and Important Warnings 179
6.16.2 Quick Start Using Cloud Formation . 180

iii

6.16.3 Quick Start: Launch Single Instance . 181
6.16.4 Updating License . 181
6.16.5 Introducing Geographic Dispersion . 182
6.16.6 Monitoring the Autoscaling Cluster Using CloudWatch 185
6.16.7 Performance Recommendations . 188

6.17 Template parameters . 188
6.17.1 Definition of Template Parameter . 188
6.17.2 Set specific values for Template Parameters . 189

7 ABC SBC System administration 191
7.1 User Management . 191

7.1.1 GUI User Management . 191
7.1.2 CLI User Management . 192

7.2 Server Administration . 193
7.3 Backup and Restore Operations . 193

7.3.1 ABC SBC Configuration Management . 193
7.3.2 ABC SBC Configuration Backup . 194
7.3.3 ABC SBC Recovery Procedure . 195
7.3.4 Manual Backup of the Complete SBC Configuration 196
7.3.5 Manual Restore of the Complete SBC Configuration 197

7.4 ABC Monitor Backup and Restore Operations . 198
7.4.1 ABC Monitor Configuration Backup . 198
7.4.2 ABC Monitor Configuration Restore . 199

7.5 How to setup a Semi-redundant CCM on ABC SBC . 199
7.5.1 Setup primary CCM node . 199
7.5.2 Setup backup CCM node . 200
7.5.3 Configure configuration snapshot backups . 200
7.5.4 Setup configuration backups transfer to backup CCM node 200
7.5.5 Steps to make the backup CCM available in case of primary CCM node failure 201
7.5.6 Steps to be done on SBC nodes to start using new CCM 201
7.5.7 Additional steps and checks . 202

7.6 Upgrade Procedure . 202
7.6.1 Container ABC SBC upgrade . 202
7.6.2 ABC Monitor Upgrade Procedure . 203

7.7 Migration from 4.5/4.6 to 5.0 . 204
7.7.1 ABC SBC migration procedure . 204
7.7.2 ABC Monitor migration procedure . 207

7.8 SBC Dimensioning and Performance Tuning . 207
7.8.1 Trunking Use Case . 208
7.8.2 Trunking with Transcoding . 208
7.8.3 Traffic Estimates for Residential VoIP . 208
7.8.4 Performance Tuning . 209

7.9 Removing SBC Node . 209

8 Monitoring and Troubleshooting 210
8.1 Overview of Monitoring and Troubleshooting Techniques . 210
8.2 ABC Monitor (Optional) . 211

8.2.1 Events (optional) . 213
8.2.2 HOWTO Find a Needle in the Haystack: Iterative Event Filtering 221
8.2.3 Using Filters . 225
8.2.4 Overview Dashboard . 227
8.2.5 Calls Dashboard . 228
8.2.6 Registration Dashboard . 231
8.2.7 Connectivity CA Dashboard . 232
8.2.8 Security Dashboard . 235
8.2.9 Exceeded Limits Dashboards . 237
8.2.10 System Dashboard . 240
8.2.11 Network and Statistics Dashboard . 241

iv

8.2.12 Diagnostics Dashboard . 242
8.2.13 Monitor Troubleshooting . 243

8.3 Live ABC SBC Information . 244
8.3.1 Registration Cache . 244
8.3.2 Live Calls . 245
8.3.3 Destination Blacklists . 245
8.3.4 User Recent Traffic . 246

8.4 Using SNMP for Measurements and Monitoring . 247
8.4.1 General Statistics . 247
8.4.2 Statistics per Realm / Call Agent . 248
8.4.3 Call Agent destination status . 248
8.4.4 Interfaces statistic . 249
8.4.5 User Defined Counters . 249
8.4.6 SNMP traps . 250
8.4.7 Node Process Monitoring . 250
8.4.8 Node status report . 251

8.5 Command-line SBC Process Management . 251
8.5.1 Process Management using Systemd . 251
8.5.2 SEMS – the SIP and RTP processing Daemon . 252
8.5.3 REDIS – the Real-time Database . 253

8.6 Additional Sources of Diagnostics Information . 253
8.7 Viewing ABC SBC Logs . 253
8.8 Coredumps . 254

9 Securing SIP Networks using ABC SBC and ABC Monitor (optional) 256
9.1 SIP Security Principles: Collect, Analyze and Police . 256
9.2 Police: Devising Security Rules in the ABC SBC . 258

9.2.1 Manual IP-layer Blocking . 260
9.2.2 Automatic IP Address Blocking . 261
9.2.3 Automatic Proactive Blocking: Greylisting . 265
9.2.4 Manual SIP Traffic Blocking . 268
9.2.5 Traffic Limiting and Shaping . 273
9.2.6 Call Duration Control . 277

9.3 Collect Events: Gathering Usage Data in the ABC Monitor . 278
9.3.1 Reporting Security Events . 279
9.3.2 Setting up Diagnostic Events . 279

9.4 Analyze: Finding Patterns in Events using the ABC Monitor . 280
9.4.1 Password Guessing Attacks . 281
9.4.2 Scanning Attacks . 282
9.4.3 Denial-of-Service Attacks . 283
9.4.4 Distributed Attacks . 285
9.4.5 Dial-out Attempts . 285

9.5 Practices for Devising Secure Rule-basis . 286
9.5.1 Topology Hiding . 287
9.5.2 Devising a secure rule-base . 289

10 Preview of Experimental Features 293
10.1 Using Two-Factor Authentication for Users . 293

10.1.1 Prerequisites . 293
10.1.2 Rules for Two Factor Authentication Processing . 299
10.1.3 Rules for determining User Status and discriminating by it 300
10.1.4 Routing Rule to Connect Two Factor Authentication Processing and User Discrimination 301
10.1.5 Scenario Modifications . 301

10.2 AWS: Reputation Lists . 301
10.2.1 Setting Up ABC SBC for Use of Reputation List on AWS 302
10.2.2 Setting Up ABC Monitor for Use of Reputation List on AWS 302

10.3 Server Transaction limits . 302
10.3.1 Setting proper limits . 304

v

10.4 New restify CDR process . 304
10.4.1 CDRs Location . 304
10.4.2 CDRs configuration . 304
10.4.3 CDR Format . 305

11 Reference of Actions 307
11.1 SIP Mediation . 307
11.2 SDP Mediation . 317
11.3 Monitoring and Logging . 323
11.4 Traffic Shaping . 324
11.5 Media Processing . 324
11.6 SIP Dropping . 334
11.7 Scripting . 334
11.8 Register Processing . 335
11.9 External Interaction . 335
11.10 NAT Handling . 336
11.11 Other . 336
11.12 Default Audio Files . 336

11.12.1 Join meet-me conference . 336
11.12.2 Meet-me set PIN audio prompts . 338
11.12.3 Two-Factor authentication . 338

12 Reference of Global Configuration Parameters 339
12.1 AWS Parameters . 340
12.2 Backup Parameters . 340
12.3 CDR Parameters . 341
12.4 Event Parameters . 341
12.5 Eventbeat Parameters . 343
12.6 Firewall Parameters . 343
12.7 LDAP Parameters . 345
12.8 Lawful Interception Parameters . 347
12.9 Login . 347
12.10 Low-level Parameters . 347
12.11 Miscellaneous Parameters . 349
12.12 Meet-Me web conference Parameters . 350
12.13 System Monitoring Parameters . 350
12.14 System Monitoring LDAP access Parameters . 352
12.15 PCAP Parameters . 352
12.16 SEMS Parameters . 352
12.17 SIPREC Parameters . 355
12.18 SIP Parameters . 355
12.19 SRTP Parameters . 357
12.20 Syslog Parameters . 358
12.21 Signaling SSL . 359
12.22 RTP handling Parameters . 359

13 Reference of Log Level Parameters 361
13.1 Debug log level per node or per system . 363

13.1.1 Per system . 363
13.1.2 Per node . 363

14 Reference of Call Agent Configuration Parameters 364
14.1 Destination Monitor Parameters . 364
14.2 Blacklisting Parameters . 364
14.3 Registration Agent Parameters . 365
14.4 Topology Hiding Parameters . 366
14.5 Firewall Blacklisting Parameters . 366
14.6 Security Parameters . 367
14.7 SIP Timer Parameters . 367

vi

15 Reference of Default Port Numbers 368

16 Reference Interface Parameters 371

17 Reference Application Interface Options 372
17.1 SSH . 373
17.2 Media . 373
17.3 Signaling . 373
17.4 WebSocket signaling . 374
17.5 SNMP . 374
17.6 Prometheus Pull Service . 374
17.7 TURN server for websocket . 375
17.8 PCAP query service . 375
17.9 Local monitoring query service . 376
17.10 Management for host . 376
17.11 Local webconf API . 376
17.12 Log files provider . 377
17.13 HTTP proxy . 377
17.14 HTTP redirect . 377
17.15 Call state HA replication . 378

18 Command Line Reference 379
18.1 Configuration Management . 380
18.2 User Management . 381
18.3 Low-Level CLI . 381
18.4 HA CLI . 382
18.5 ABC Monitor Configuration Management . 382

19 Reference of Used Open-Source Software 383

20 Reference Userdata Parameters for AWS Instances 386

21 Reference XML-RPC functions 387
21.1 Provisioned Tables . 388
21.2 Call agents . 389
21.3 TLS profiles . 389
21.4 Nodes . 389
21.5 Logical interfaces . 389
21.6 System interfaces . 389
21.7 Maintenance mode . 390

22 Reference of CCM Configuration Parameters 391
22.1 Login . 391
22.2 LDAP Parameters . 392
22.3 Backup Parameters . 396
22.4 Management access Parameters . 397
22.5 SBC to CCM authentication Parameters . 397
22.6 Email Parameters . 397
22.7 Certbot Parameters . 398
22.8 Miscellaneous Parameters . 399

23 Reference of Supported Codecs 400

24 Glossary 401

Index 403

vii

Chapter 1

About the ABC Session Border Controller

This manual is a complete handbook for the ABC Session Border Controller (ABC SBC). It documents network
planning, SBC installation, policy configuration and the best current practices for operating the SBC.

The ABC Session Border Controller (ABC SBC) is a SIP Back-2-Back User Agent (B2BUA) that provides op-
erators and enterprises with a scalable session border control solution for secure connections with Voice over IP
(VoIP) operators and users. With the ABC SBC VoIP service providers and enterprises deploy a session border
controller that is designed to run on top of high end hardware as well as appliances and virtual machines. Thereby,
the ABC SBC enables VoIP providers to gradually scale up their infrastructure and covers the needs of enterprises
of all sizes.

The ABC SBC provides the following features:

• Infrastructure Security: The ABC SBC serves as the first line of defence, fending off attacks coming over
the Internet, hiding internal topology, applying rate limits and performing Call Admission Control, limiting
number of parallel calls and call length, and off-loading registrar and registration throttling.

• Confidentiality. The ABC SBC implements cryptographic protocols TLS and SRTP that make it incredi-
bly hard for unauthorized third parties to intercept VoIP calls. Secured telephony is possible even without
exotic telephones using off-the-shelf webRTC browsers (See the next point). The ABC SBC can also com-
bine cryptographically secured RTC telephony with traditional policy-based IT practices like VPNs, so that
confidentiality can be achieved in a practicable end-to-end way between all kinds of equipment.

• Browser Telephony. The ABC SBC includes a built-in SIP/WebRTC gateway. The gateway allows users
to interconnect WebRTC browser telephony with SIP telephony and even PSTN telephony users behind
SIP/telephony gateways. The browser telephony allows for easy integration with web applications and
provides a level of privacy previously unprecedented before in fixed and mobile networks.

• Network Functions Virtualization (NFV). The ABC SBC also comes in a virtualized form that allows admin-
istrators to run the SBC without managing the physical infrastructure. More than that, a whole auto-scaling
load-balanced RTC gateway cluster can be started in Amazon Elastic Cloud by a single button using the
Cloud Formation launching facility. Such a cluster adapts to network conditions, growing and shrinking
with network traffic. It can be geographically dispersed for best QoS worldwide and it can be launched in
less than five minutes – compare that to the effort of placing your own equipment in multiple geographically
distributed air-conditioned data-centers!

• Mediation: The ABC SBC connects disconnected unroutable networks and VLANs, different transport
protocols, secured and plain RTP, facilitates NAT traversal, steers codec negotiation, translates identities
and adapts SIP headers and bodies for best interoperability between incompatible devices and networks
policies.

• Rapid IT integration. The ABC SBC dramatically reduces the time-to-deploy. Studies show that in the
vast majority of new network deployments inadequate time and cost is spent in designing data integration
concepts. ABC SBC reduces the time-to-deploy with its built-in integration capabilities. Administrators
can place external logic to web-servers and govern how the SBC behaves through a RESTful interface.
Large amounts of pre-provisioned data can be used to govern the SBC logic, such as routing tables, peering
characteristics, SIP bulk registration, blacklists or whitelists, or subscriber information.

1

FRAFOS ABC SBC Handbook, Release 5.3

• SIP Routing: The ABC SBC’s competitive design allows administrators to route SIP traffic based on
any message element. Routing methods like source-based, destination-based, least-cost-route based,
proprietary-header-field-based and others can be easily configured and cascaded behind each other to find
the most-proper destination for SIP traffic.

• Real-time monitoring. The ABC SBC allows its administrator to permanently know what is going on in
their SIP networks. Due to the centralized nature of SBCs, the ABC SBC enables you to gain deep insight
into the traffic it steers and constantly reports on it using “events” and “Call Detail Records” (CDRs). This
data can be further used to perform troubleshooting, backwards analysis and future predictions of the system
as whole as well as that of its individual users. The ABC SBC also reports on its status using SNMP.

• Media processing: The ABC SBC includes built-in audio recording, transcoding, announcements and con-
ferencing.

• Web management. Remote management allows rapid and convenient adaptation to ever changing network
conditions. ABC SBC’s policies can be easily changed through the web interface.

• Non-stop service. The ABC SBC is designed to provide high-availability by running in redundant hot-
standby pairs. Alternate route definitions and built-in monitoring conceal scheduled and unplanned outages
of network elements behind the ABC SBC.

1.1 How to Start?

This book is intended for everyone interested in installing and using the ABC SBC. Knowledge of SIP, RTP and
IP networking is of an advantage and would ease the reading and use of the book. Of essential value is, however, a
good understanding of the VoIP environment in which the ABC SBC is to be deployed. Depending on your goal,
there are these options for how to get the most out of this book in the shortest time:

• Cloud RTC Trial: Trialing the RTC gateway using amazon Elastic Cloud allows you to start the We-
bRTC/SIP gateway service within minutes and establish connectivity between web browsers and an ex-
isting SIP service. See the Section Amazon Elastic Cloud Configuration Cookbook and visit our trial site at
https://go.frafos.com/.

• Installing the ABC SBC: Before installing the ABC SBC it is advisable to go through the practical guide to
have a better understanding of the needed infrastructure. After installing the ABC SBC, the practical guide
can be used for a quick configuration of the solution. In case certain issues need to be solved that are not
covered in the guide, then a look into the reference chapter (Section Reference of Actions) will be helpful.
The administrator should also go through the administration, monitoring and security chapters to develop a
better understanding and control of the installed system.

The book is structured in the following parts:

• Introduction: This section provides an overview of the basic technologies addressed here, namely SIP
and SBC. Furthermore, the basic concepts and terminology of the ABC SBC are described. If you are
knowledgeable with SIP and VoIP deployments you can skip the introductions to SIP and SBCs.

• Practical Guide to the ABC SBC: This section provides first an overview of what a future user of the ABC
SBC - or actually any other SBC as well - must consider before purchasing and installing an SBC. Moreover,
this guide can be seen as a short cut for configuring and using the main features of the ABC SBC without
having to go through the entire manual.

• Installing the ABC SBC: This section covers the steps needed to deploy the ABC SBC. Firstly, one needs to
determine whether to do a complete installation from the FRAFOS repository or to use ABC SBC container
version.

• General ABC Configuration Guide: This section provides the details about the different features of the ABC
SBC, what they are good for and how they can be used. For the more complex parts, additional sections
with examples are provided. These example sections are intended as short cuts for solving common issues.

• ABC SBC System administration: This chapter explains a set of features available for the administrator of
the ABC SBC. These features include the capability to create and manage users of the ABC SBC and define

1.1. How to Start? 2

https://go.frafos.com/

FRAFOS ABC SBC Handbook, Release 5.3

their rights, the list of commands that can be used to run certain tasks that might not be available through
the GUI as well as conduct upgrades and updates of the ABC SBC software.

• Monitoring and Troubleshooting: The ABC SBC collects various measurement values and call traces
and generates alarms and SNMP traps. These features provide the administrator of the ABC SBC with
the information needed to detect errors and problems in the processed VoIP traffic as well as in the opera-
tion of the ABC SBC.

• Securing SIP Networks using ABC SBC and ABC Monitor (optional): This chapter provides an overview of
the security capabilities of the ABC SBC as well as a guide for configuring blacklists, traffic shaping and
limiting the call duration.

1.2 Credits

The initial version of this book was written by the FRAFOS team with support from Sipwise in a three day Book
Sprint facilitated by Barbara Rühling. The illustrations were provided by Juan Camilo Cruz. This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License .

1.2. Credits 3

http://creativecommons.org/licenses/by-sa/4.0/

Chapter 2

Release Notes

2.1 Release Notes for ABC SBC version 5.3

The new ABC SBC major release brings following new features and improvements:

• Containers (CCM and SBC) are internally based on the new stable Debian 12 “bookworm”. Debian 12 is
also a new recommended OS for hosting the ABC SBC containers.

• CCM has new experimental feature for import/export of whole SBCs cluster configuration in JSON format
using command line scripts cluster-config-import and cluster-config-export.

• Added support for Signaling SSL over TLS v1.3.

• Added configuration option for not storing audio recordings for call-attempts.

• Added option to avoid dropping comfort noise payload even if it was not negotiated.

• Added support for configuration of SIP transaction timers either via action or via CA attributes.

• Added a warning in case a default license is used.

• Error about loosing a connection to a monitor was downgraded to warning.

For a detailed list of all changes and fixes, please check the SBC changelog, which is sent by email to customers
or can be found in /usr/share/doc/frafos-sbc/CHANGELOG.md file on the new container node.

2.2 Release Notes for ABC Monitor version 5.3

The new ABC Monitor major release brings following new features and improvements:

• ABC Monitor container is internally based on the new stable Debian 12 “bookworm”. Debian 12 is also a
new recommended OS for hosting the ABC Monitor container.

• Log messages are now visible in the call flows if they are present in PCAP.

• Removed “rate / absolute” switch for networking charts. They show correct interpretation now.

• Removed limitation for maximum 10 stored filters. The limit is now 500.

• Changed numbers format in charts from days:hours:mins just to minutes or seconds (if a number is smaller
than 1 minute)

• Possible values of “Peer certificate verification level” option, used for TLS peer validation, have changed.
Just two values are supported now:

– ignore peer certificate

– verify peer certificate

4

FRAFOS ABC SBC Handbook, Release 5.3

If the option value was originally something else than “ignore peer certificate”, it will be changed after
upgrade to “verify peer certificate”.

The values of “verify peer certificate if present”, “verify peer with locally installed certificate”, “ignore CA
chain and only verify peer certificate” are not supported any more.

Warning: If there was no “CA cert to check for TLS events input” configured before upgrade, certifi-
cate verification can not properly work even if “Peer certificate verification level” is set to “verify peer
certificate” after upgrade and it is necessary to provide “CA cert to check for TLS events input” to make
TLS certificate verification working.

• Many bug fixes and internals refactorings.

For a detailed list of all changes and fixes, please check the ABC Monitor changelog, which is sent by email to
customers.

2.2. Release Notes for ABC Monitor version 5.3 5

Chapter 3

Introduction

3.1 A Brief Introduction to History and Architecture of SIP

The Session Initiation Protocol (SIP, RFC 3261) is a backbone of every VoIP network nowadays. Its “language”
is used by telephony devices to find each other, signal who is calling whom, negotiate which audio/video codecs
to use and even more. The telephony devices are typically SIP desktop phones, but it may be also smartphones,
softphones, or massive PSTN gateways with PSTN infrastructure and users behind them. In between, there are
intermediary SIP network devices that help to locate the end-user devices, perform Call Admission Control, help
often with various imperfections of the end-devices and perform other useful functions. The ABC Session Border
Controller is one of such, however other kinds of SIP proxy servers, Back-to-Back User Agents, specialized
application servers, and more are common.

VoIP began to reach market back in mid nineties. By then Internet had established itself as a consumer prod-
uct. The number of users buying PCs and subscribing to an Internet Service Provider (ISP) for a dial-up access
was increasing exponentially. While mostly used for the exchange of Email, text chatting and distribution of
information VoIP services based on proprietary solutions as well as H.323 started to gain some popularity. The
standardization organization Internet Engineering Task Force, IETF, began to devise its own protocol suite. Some
protocols existed already by then. The Real-Time Transport Protocol (RTP) RFC 1889 enabled the exchange of
audio and video data. The Session Description Protocol (SDP) RFC 2327 enabled the negotiation and description
of multimedia data to be used in a communication session. The first applications, often open-source, for sending
and receiving real-time audio and video data emerged. A signaling protocol was missing, however.

In those days, the procedure for establishing a VoIP call between two users based on the IETF standards would
look as follows: The caller starts his audio and video applications at a certain IP address and port number. The
caller then either calls the callee over the phone or sends him an Email to inform him about the IP and port address
as well as the audio and video compression types. The callee then starts his own audio and video applications and
informs the caller about his IP and port number. While this approach was acceptable for a couple of researches
wanting to talk over a long distance or for demonstrating some research on QoS this was clearly not acceptable
for the average Internet user.

The Session Initiation Protocol (SIP) RFC 3261 was the attempt of the IETF community to provide a signaling
protocol that will not only enable phone calls but can also be used for initiating any kind of communication
sessions. SIP has been contemplated for use by audio and video calls, as well as for setting up a gaming session
or controlling a coffee machine.

The SIP specifications describe three types of components: user agents (UA), proxies and registrar servers. The
UA can be the VoIP application used by the user, e.g., the VoIP phone or software application. A VoIP gateway,
which enables VoIP users to communicate with users in the public switched network (PSTN) or an application
server, e.g., multi-party conferencing server or a voicemail server are also implemented as user agents. The
registrar server maintains a location database that binds the users’ VoIP addresses to their current IP addresses.
The proxy provides the routing logic of the VoIP service. When a proxy receives a SIP request from a user agent
or another proxy it also conducts service specific logic, such as checking the user’s profile and whether the user is
allowed to use the requested services. The proxy then either forwards the request to another proxy or to another
user agent or rejects the request by sending a negative response.

6

https://tools.ietf.org/html/rfc3261.html
https://tools.ietf.org/html/rfc1889.html
https://tools.ietf.org/html/rfc2327.html
https://tools.ietf.org/html/rfc3261.html

FRAFOS ABC SBC Handbook, Release 5.3

While the server roles prescribed by the SIP specification are functional, actual implementations found in networks
tend to integrate multiple roles in a server product. A registrar is often co-located with a proxy server so that they
can share user-location databases. A server can also present itself as User-Agent to both sides of a signaling
session to be able to manipulate SIP messages more extensively than the proxy specification would permit.

Every signaling SIP transaction consists of a request and one or more replies. The three most commonly used
request types are REGISTER, INVITE and BYE. The REGISTER request makes a SIP phone’s address known
to a SIP server so that it knows where to forward incoming SIP requests. The INVITE request initiates a dialog
between two users. A BYE request terminates this dialog. Responses can either be final or provisional. Final
responses can indicate that a request was successfully received and processed by the destination. Alternatively, a
final response can indicate that the request could not be processed by the destination or by some proxy in between
or that the session could not be established for some reason. Provisional responses indicate that the session
establishment is in progress, e.g. the destination phone is ringing.

In general one can distinguish between three types of SIP message exchanges, namely registrations, dialogs and
out of dialog transactions.

Fig. 1: SIP Call flow

A SIP registration enables a user agent to register its current address, IP address for example, at the registrar. This
enables the registrar to establish a correlation between the user agent’s permanent address, e.g. sip:user@frafos.
com, and the user agent’s current address, e.g., the IP address used by the user’s user agent. In order to keep this
correlation up to date the user agent will have to repeatedly refresh the registration. The registrar will delete a
registration that is not refreshed for a while.

A SIP dialog, a call for example, usually consists of a session initiation phase in which the caller generates an

3.1. A Brief Introduction to History and Architecture of SIP 7

sip:user@frafos.com
sip:user@frafos.com

FRAFOS ABC SBC Handbook, Release 5.3

INVITE that is responded to with provisional and final responses. The session initiation phase is terminated with
an ACK, see SIP Call flow. A dialog is terminated with a BYE transaction. Depending on the call scenario the
caller and callee might exchange a number of in-dialog requests such as reINVITEs or REFER.

The last type of SIP interactions is SIP transactions that are not generated as part of a dialog. Examples of out
of dialog SIP requests include OPTIONS and INFO that are often used for exchanging information between SIP
nodes or as an application level heartbeat.

Every SIP message consists of three parts: First line, message header and message body, see Content of SIP
messages. The first line states the purpose of the message. For requests it identifies its type and the destination
address. For replies the first line states the result as a numerical 3-digit status code together with a textual human-
readable form. The second part of the message, the header part, includes a variety of useful information such as
identification of the User Agent Client and the SIP path taken by the request. The third part includes a message
body that contains application specific information. This can be for example session description information
(SDP) indicating the supported codecs.

Fig. 2: Content of SIP messages

The information contained in these three parts can be roughly divided into three categories, see Content of SIP
messages:

• Addressing and routing information: This includes information about who has sent the message and where
it is destined to, the next hop to be sent to as well as the hops it has traversed. This information is included
in the first line as well as in different headers such as From, To, Contact, P-Asserted-Identity, Via, Route,
Path and other headers. The message body can contain information about where the media traffic should be
sent to or is expected to come from.

3.1. A Brief Introduction to History and Architecture of SIP 8

FRAFOS ABC SBC Handbook, Release 5.3

• Dialog and transaction identification: This part of a SIP message is used to uniquely identify a SIP dialog
or transaction. This information is included in SIP headers such as Cseq, Call-Id and tags included in From,
To and Via headers.

• Dialog content: With dialog content we categorize data that is included in a SIP message that is either used
to describe certain features of a dialog or indicates how a node receiving the message should process the
message. This can include parts of the SIP message body carrying SDP, which includes description about
which audio or video codes to use. Certain headers such as Privacy for example indicate the user’s wishes
with regard to the way private information such as user address should be dealt with.

3.2 What is a Session Border Controller (SBC)?

Historically Session Border Controllers emerged after publication of the SIP standard as a panacea to early pro-
tocol design mistakes: ignorance of Network Address Translators (NATs), unclear data model, liberal syntax,
reluctance to standardize legal interception and more.

Probably the single biggest mistake in the design of SIP was ignoring the existence of network address translators
(NAT). This error came from a belief in the IETF leadership that IP address space would be exhausted more
rapidly and would necessitate global upgrade to IPv6 which would eliminate the need for NATs. The SIP standard
has assumed that NATs do not exist, an assumption, which turned out to be a failure. SIP simply didn’t work for
the majority of Internet users who are behind NATs. At the same time it became apparent that the standardization
life-cycle is slower than how the market ticks: SBCs were born, and began to fix what the standards failed to do:
NAT traversal.

Yet another source of mistakes has been the lack of a clear data model behind the protocol design. Numerous
abstract notions, such as dialog or session, transaction or contact simply didn’t have unique unambiguous identi-
fiers associated with them. They were calculated or almost guessed out of various combinations of header-fields,
decreasing the interoperability. Some message elements, such as Call-ID, have been overloaded with multiple
meanings. While some of these were fixed in the later SIP revision and its extensions (rport RFC 3581, branch,
gruu RFC 5628, session-id) the market forces jumped in quickly. SBCs began to implement “protocol repair”.

The other class of mistakes emerged from implementations. Many SIP components were built under a simplifying
assumption that security comes for free. Numerous implementations were found to be vulnerable to malformed
SIP messages or excessive load. The SBCs began to play a security role.

The reality in today’s real time communication networks is that, contrary to the end-to-end design of the Inter-
net and its protocols, service operators can achieve the best user experience by exerting tight control - over the
endpoints and over the interface to peering networks.

Over several years, Session Border Controllers became a de facto standard for which ironically no normative
reference existed. A non-normative information reference on the subject, RFC 5853 was published as late as
in 2013. Session Border Controllers nowadays handle NATs, fix oddities in SIP interoperability and filter out
illegitimate traffic. They began to incorporate elements of the standardized SIP components. For example, routing
functionality contemplated by the standards for proxy servers is nowadays part of SBC products. Similarly the
SBCs often incorporate media recording and processing functions, whether that’s for quality assurance, archiving
or legal-compliance purposes.

3.2.1 General Behavior of SBCs

Purist SIP call flow depicts the message flow of an INVITE request between a caller and a callee. This is the
simplest message sequence that one would encounter with only one proxy between the user agents. The proxy’s
task is to identify the callee’s location and forward the request to it. It also adds a Via header with its own
address to indicate the path that the response should traverse. The proxy does not change any dialog identification
information present in the message such as the tag in the From header, the Call-Id or the CSeq. Proxies also do
not alter any information in the SIP message bodies. Note that during the session initiation phase the user agents
exchange SIP messages with the SDP bodies that include addresses at which the agents expect the media traffic.
After successfully finishing the session initiation phase the user agents can exchange the media traffic directly
between each other without the involvement of the proxy.

3.2. What is a Session Border Controller (SBC)? 9

https://tools.ietf.org/html/rfc3581.html
https://tools.ietf.org/html/rfc5628.html
https://tools.ietf.org/html/rfc5853.html

FRAFOS ABC SBC Handbook, Release 5.3

SBCs come in all kinds of shapes and forms and are used by operators and enterprises to achieve different goals.
Actually even the same SBC implementation might act differently depending on its configuration and the use case.
Hence, it is not easily possible to describe an exact SBC behavior that would apply to all SBC implementations.
However, in general one we can still identify certain features that are common for most of SBCs. For example,
most SBCs are implemented as “Back-to-Back User Agent” (B2BUA).

A B2BUA is a proxy-like server that splits a SIP transaction in two pieces: on the side facing the User Agent
Client, it acts as server; on the side facing the User Agent Server it acts as a client. While a proxy usually keeps
only state information related to active transactions, B2BUAs keep state information about active dialogs, e.g.,
calls. That is, once a proxy receives a SIP request it will save some state information. Once the transaction is over,
e.g., after receiving a response, the state information will soon after be deleted. A B2BUA will maintain state
information for active calls and only delete this information once the call is terminated.

Fig. 3: Purist SIP call flow

SIP call flow with SBC depicts the same call flow as in Purist SIP call flow but with an SBC in between the caller
and the proxy. The SBC acts as a B2BUA that behaves as a user agent server towards the caller and as user agent
client towards the callee. In this sense, the SBC actually terminates that call that was generated by the caller and
starts a new call towards the callee. The INVITE message sent by the SBC contains no longer a clear reference to
the caller. The INVITE sent by the SBC to the proxy includes Via and Contact headers that point to the SBC itself
and not the caller. SBCs often also manipulate the dialog identification information listed in the Call-Id and From
tag. Further, in case the SBC is configured to also control the media traffic then the SBC also changes the media
addressing information included in the c and m lines of the SDP body. Thereby, not only will all SIP messages
traverse the SBC but also all audio and video packets. As the INVITE sent by the SBC establishes a new dialog,
the SBC also manipulates the message sequence number (CSeq) as well the Max-Forwards value.

Note that the list of header manipulations listed in SIP call flow with SBC is only a subset of the possible changes
that an SBC might introduce to a SIP message. Furthermore, some SBCs might not do all of the listed manipula-
tions. If the SBC is not expected to control the media traffic then there might be no need to change anything in the
SDP lines. Some SBCs do not change the dialog identification information and others might even not change the
addressing information.

3.2. What is a Session Border Controller (SBC)? 10

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 4: SIP call flow with SBC

3.2.2 General Deployment Scenarios of SBCs

Session border controllers are usually deployed in a similar manner to firewalls, namely with the goal of estab-
lishing a clear separation between two VoIP networks.

Fig. 5: SBC deployment scenarios

In general one can distinguish three deployment scenarios, see SBC deployment scenarios:

• User-Network-Interface (UNI): Operators use SBCs to establish a secure border between their core VoIP
components and subscribers. The core components consists of PSTN gateways, media servers, SIP proxy
and application servers. Subscribers use SIP hardphones and softphones, Internet Access Devices that
connect analog and digital phones to the IP network, and newly web browsers deploying the WebRTC
standard. Most important administrative tasks in this scenario include facilitation of NAT traversal (see NAT

3.2. What is a Session Border Controller (SBC)? 11

FRAFOS ABC SBC Handbook, Release 5.3

Traversal), achieving interoperability among multiple types of clients (see SIP Mediation), security against
attacks coming from the public Internet (see Securing SIP Networks using ABC SBC and ABC Monitor
(optional)) and off-loading registrar (see Section Registration Caching and Handling).

• Network-Network-Interface (NNI): In the NNI interface, two operators connect to each other directly over
SIP. Most important administrative concerns in this scenario include mediation of different network policies
(see SIP Mediation), enforcement of service-level-agreements between providers by traffic shaping (see
Traffic Limiting and Shaping) and multi-provider SIP routing (see SIP Routing).

• Enterprise SBC (E-SBC): Enterprises are increasingly replacing their PBXs with VoIP PBX or are extending
their PBX with a VoIP module to benefit from attractive VoIP minute prices. Enterprise SBCs are used to
secure the access to the PBX. The enterprise SBC is also expected to secure the communication to the
VoIP operator, which is offering the VoIP service to the enterprise. Typical administrative concerns include
harmonization of dialing plans between an enterprise and its trunking partners using the mediation feature
see SIP Mediation), and setting up secured VoIP connectivity for web-users (see Securing SIP Networks
using ABC SBC and ABC Monitor (optional)).

3.3 Do You Need an SBC?

Before installing an SBC it might be worth thinking whether an SBC is needed in the first place. To answer this,
here are a couple of questions:

• will you deal with SIP devices behind a NAT? If the answer is yes then deploying an SBC is most likely the
right choice. While there are already a number of NAT traversal solutions such as STUN RFC 5389, TURN
RFC 5766 or ICE RFC 5245 these solutions either do not solve all issues or require certain extensions at
the end devices which are not always available.

• do you deploy SIP devices that you would not want other users or operators to be able to send SIP or media
traffic directly to? This is usually the case when a PBX or a PSTN gateway is deployed. If the answer is
yes then an SBC would be the right choice as it would hide the IP addresses of these devices and prevent
direct communication to them.

• do you deploy a heterogeneous set of VoIP devices? If yes then an SBC can be the proper point in the
network to fix interoperability issues by normalizing the traffic and solving issues created by protocol im-
plementation peculiarities.

• do you want to protect your VoIP devices from Denial of Service attacks? If there is the danger that an
attacker might overload your network and VoIP devices by generating a large amount of SIP requests and
RTP packets then an SBC would act as a first line of defense and filter the malicious traffic before it reaches
the core VoIP components.

• do you want to reduce the possibilities of fraud? If there is a danger that a fraudulent user might try to make
more calls than allowed then an SBC would be the best approach. With an SBC it is possible to reliably
limit the number of calls made by a user.

• do you want to protect your users from a bill shock? When a user calls an expensive number and fails to
terminate the call in a proper manner then he will most likely get a shock when receiving the bill for a call
lasting for hours. An SBC on the border of the network can be configured so as to cut calls after a certain
period of time and hence limit the damage.

• will you need to transcode the media? If different users are using different codecs - which is especially the
case when connecting mobile to fixed networks - then media transcoding will be needed. Media transcoding
is often an integral part of SBCs.

• will your users be using browser telephony using WebRTC? Then you need to connect them to the rest of
SIP world and SIP-PSTN gateways using the built-in WebRTC gateway.

3.3. Do You Need an SBC? 12

https://tools.ietf.org/html/rfc5389.html
https://tools.ietf.org/html/rfc5766.html
https://tools.ietf.org/html/rfc5245.html

FRAFOS ABC SBC Handbook, Release 5.3

3.4 ABC SBC Networking Concepts

This section provides an overview of the main concepts and terms of the ABC SBC. It shows the overall model of
SBC-managed networks, how the SBC connects to the individual networks using “Interfaces”, models SIP devices
as “Call Agents”, and groups these in “Realms”. Eventually A-B-C rules are described that define how the ABC
SBC manages SIP traffic as it passes through it.

3.4.1 Network Topology

As depicted in the Figure ABC SBC Concepts Overview, the ABC SBC communicates with VoIP phones, media
servers and other entities that act as SIP user agent. We call these entities Call Agents (CA) and group them into
so called Realms. The ABC SBC associates rules with Call Agents and Realms. These rules fully describe how
every single session traversing the ABC SBC from one CA/Realm to another is processed.

The rule processing occurs in three steps. When receiving a SIP message from a Call Agent, the ABC SBC
will first execute inbound rules (“A-Rules”) associated with the Call Agent and the Realm it belongs to. These
rules typically implement all kinds of admission control. Once the message is accepted the ABC SBC applies
routing rules (“B-Rules”) to determine the Call Agent where to send the message to. Before actually forwarding
the message to the destination, the ABC SBC executes its outbound “C-rules”. The C-Rules are typically used
to transform the SIP messages to conform to practices used by the destination, such as local specific dialing
conventions.

Fig. 6: ABC SBC Concepts Overview

3.4.2 SBC Interfaces

SBC Interfaces define how the ABC SBC connects to the adjacent IP networks. They are are an abstraction layer
on top of the network interfaces. Specifically, the SBC Interfaces define through which IP addresses, port numbers
and network interfaces the ABC SBC offers its services.

There are the following types of SBC interfaces:

• Internal management (IMI): used in high availability (HA) and cluster setups as the communication channel
between the SBC node servers and between CCM and SBC nodes.

• Media (MI): used for receiving and sending media payload.

• Signaling (SI): used for receiving and sending SIP signaling messages.

• Websocket Signaling (WS): used for receiving and sending SIP over websocket from and to WebRTC
clients.

• Custom Interface (CI): used for different applications depend on admin (e.g. SSH, SNMP, HTTP
proxy/redirect)

Each of the SBC interfaces is mapped to a physical or system network interface that is used for the actual sending
and receiving of the data. Multiple SBC interfaces can be mapped to the same network interface. If VLANs are
used, they are administered under management of physical interfaces and remain otherwise transparent to the rest
of the system.

3.4. ABC SBC Networking Concepts 13

FRAFOS ABC SBC Handbook, Release 5.3

Administration of the SBC interfaces is described in the Section Interface Configuration.

3.4.3 Call Agents

Call Agents (CA) are the smallest type of peering entities the ABC SBC can differentiate. They represent logical
end-points. They can be defined based on several addressing mechanisms:

• IP address and port

• Domain or host name and port

• IP network and mask

Additionally, a Call Agent is assigned to a signaling and a media interface. These interfaces are used whenever
SIP signaling or media packets are sent to or received from a Call Agent.

For security reasons, the SBC communicates by default only with well-known and defined Call Agents. When an
incoming SIP request cannot be attributed to a Call Agent, it is rejected.

To determine the source Call Agent, the SBC uses the source IP address and port of the request to search among
the configured Call Agents. If the definitions of Call Agents are overlapping (for example when some Call Agents
are defined with an IP address which belongs to a subnet used to define another Call Agent), the following de-
scending order is used to determine the Call Agent:

• Call Agents with matching IP address and port.

• Call Agents with matching IP address but a port equal to 0.

• Call Agents with matching IP network (including mask) in descending order of mask length

Routing rules determine the target Call Agent. In this case, the interface used to send the SIP signaling is the one
assigned to the target Call Agent. In case media relay is used, the media interface assigned to this target Call Agent
is also used accordingly. The target Call Agent is used to determine the set of applicable rules on the outbound
side as well. Note that Call Agents specified by subnet address cannot be used for routing.

3.4.4 Realms

Every Call Agent belongs to one Realm. Realms are the logical groupings of one or more Call Agents. They allow
multiple Call Agents to share the same SIP processing logic without defining it individually multiple times.

In a classical context where the SBC is placed on the border of an internal network, it is common to define one
Realm for the outside world, and one for the internal network. This way, all the restrictive rules to protect the
internal network are defined for the outside Realm, while the internal one can be safely trusted.

In a peering use case, usually one Realm per peering partner is defined.

3.4.5 A-B-C rules

The ABC SBC is fundamentally rules driven. This means that almost all features can be activated based on certain
conditions evaluated at run-time, based on parts of the signaling messages or media payload.

All rules are constructed using the same pattern. They consist of a set of one or more conditions. If all conditions
apply (logical conjunction), a set of one or more actions is executed.

It is important to understand that rules are generally applied only on dialog-initiating requests or out-of-dialog
requests. However, some actions have a scope that goes beyond these dialog-initiating requests or out-of-dialog
requests. For example, header filters apply to all requests exchanged, including in-dialog requests. Action descrip-
tions include their scopes where applicable.

There are three types of rules that are always executed in the same order: A, B, and C. A-rules describe how
incoming traffic for a Call Agent/Realm is handled, B-rules determine destination for the SIP request, and C-rules
describe SIP processing behavior specific to that chosen destination.

3.4. ABC SBC Networking Concepts 14

FRAFOS ABC SBC Handbook, Release 5.3

A and C rules are associated with Call Agents and/or Realms. The realm rules allow to have shared logic for all
Call Agents that are to be handled the same way, while CA rules are suitable for individual logic. Often, rules
are associated with both Realms and Call Agents. The Realm rules are executed first, and their results can be
overridden by more specific Call Agent Rules.

B rules are different in that they are global. They are not associated with a specific realm or call agent. When
processing of A-rules completes, the B-rules determine the next hop. That’s is the only action the B-rules can
perform. Then Realm and Call Agent specific C-rules are processed.

The FRAFOS ABC SBC handles calls according to the schema shown in the figure Call handling algorithm.

Fig. 7: Call handling algorithm

3.4. ABC SBC Networking Concepts 15

FRAFOS ABC SBC Handbook, Release 5.3

It is a good practice to place rules in realms rather than in Call Agents, unless they are clearly specific to Call
Agents. Rules in realms don’t have to be repeated Call Agent by Call Agent and don’t expose administrator to
Copy-and-Paste administrative errors.

Conditions and Actions

Fig. 8: Rule evaluation sequence

Every A/B/C rule may have one or multiple conditions. The conditions can check incoming message content
(method, R-URI, headers, codecs), source (IP, port, realm), values stored in call variables etc.

Rules have zero or more actions. If all its conditions are satisfied (‘AND’ combination), the actions of a rule are
executed in the order in which they are defined. In case a rule does not contain any conditions, the rule’s actions
are always applied.

Actions can have parameters depending on the action type. For example, the action “Add Header” that appends a
SIP header to an outgoing message takes two parameters - a header name and a header value.

Within a rule set (Realm A or C rules; Call Agent A or C rules), the SBC evaluates each rule by evaluating the
condition set first. If all conditions match, the set of actions is executed. As part of the rule definition a “continue
flag” is defined. If the “continue flag” is checked, the next rule is evaluated. Otherwise, the rule evaluation within

3.4. ABC SBC Networking Concepts 16

FRAFOS ABC SBC Handbook, Release 5.3

this block stops. Irrespectively of the state of the “continue flag”, the rule evaluation continues with the next block.
This means that if the “continue flag” is not checked in a Realm A rule where the conditions match, the Call Agent
A rule will still be executed, see Rule evaluation sequence.

Routing rules

Routing rules have the same set of conditions as A & C rules, but only one possible action: route the request to a
target Call Agent.

Fig. 9: B-Rule evaluation

The essential role of B rules is to determine to which target Call Agent the processed request will be sent to. This
also influences the outbound signaling and media interface used to send out the forwarded request.

To determine a target Call Agent, the SBC will evaluate the conditions for each routing (B) rule. Once a match is
found, the Call Agent associated with the routing rule is determined as the target Call Agent. Then, the processing
continues with the C rules assigned to the target Call Agent.

As depicted in Figure B-Rule evaluation, all active B rules are traversed and evaluated sequentially. In case all
conditions of a rule are satisfied, the destination call agent and routing method are successfully determined. In
case that the conditions of a rule are not satisfied, processing continues with the next rule. If no matching routing
rule can be found, then the call is refused with a 404 Not Found error code and an error event type is produced.

3.4. ABC SBC Networking Concepts 17

Chapter 4

Practical Guide to the ABC SBC

4.1 Network Planning Guidelines

This section provides you with a list of steps every network administrator shall walk through carefully before
deploying an SBC-powered network. Early planning helps to create robust network that well serves the needs of
its users and make administrator’s life free of surprises.

Each planning step starts with a question about a particular network planning aspect. Administrators need to to
ask themselves this question to determine their configuration needs. It is then followed by a short debate of the
most important configuration options and trade-offs. Not all available options are included, yet those present are
of major importance and shall be answered in the early planning phase.

The subsequent section includes a checklist that reiterates question raised in the section. We recommend going
through it thoroughly before a deployment is commenced, and also completing the answers in the “Customer Site
Survey” document available from our customer care.

The steps in this section are grouped as follows:

• The Section Topology Model describes how an ABC SBC connects to the IP networks, how it models SIP
devices and groups them administratively.

• The Section SBC Logic describes the anticipated behavior of the ABC SBC and what needs to be considered
when configuring it: routing, media processing, NAT handling, and more.

• The Section Security Policies summarizes configuration steps needed to protect both the connected SIP
networks and the SBC itself.

• The Section Capacity planning provides guidelines for estimating the SBCs cluster dimensions.

• Eventually the Section IT Integration discusses the configuration steps that need to be considered if the SBC
connects to other network management elements.

4.1.1 Topology Model

The key function of the SBC is to securely connect various SIP elements and peering networks together. This is
not trivial because the networks and devices may use different security policies, SIP protocol extensions, dialing
plans, codecs, etc. To deal with this variety the SBC uses a network model in which the SIP devices are represented
as abstract “Call Agents” that are grouped in “Realms”. With Call Agents (CAs) and Realms there are rules
associated that characterize how their traffic from and to them is treated.

The topology planning process includes the following steps:

18

FRAFOS ABC SBC Handbook, Release 5.3

IP layer topology

To which IP networks does the SBC connect?

The first step in defining your topology is located at the IP layer: you have to specify which IP networks connect
with each other and how the SBC connects to them. This is captured in the specification of “interfaces”.

Interfaces describe in detail how an SBC connects to IP networks. In the simplest case all traffic can be routed
through a single Ethernet card using a single IP address and dedicated UDP port range. Many deployments use
multiple Ethernet cards or VLANs to connect two or more physical networks with different levels of security.

A widely used practice we recommend is use of three network cards for three networks: unprotected public,
protected private, and highly-protected administrative. Then for example residential SIP phones and peering
providers connect to the SBC over the public network, operator’s PSTN gateways are located in a private IP
subnet, and administrators access the SBC over the administrative networks.

Note that using fewer cards makes a clean separation and security of traffic more difficult and also reduces total
throughput.

More detailed discussion of interface configuration is described in Section Physical, System and SBC Interfaces.

IP layer security

Which firewall rules shall be used in firewalls and the SBC?

Once the IP connectivity is specified, you need to specify L3/L4 restrictions for your deployment. This consists of
two parts: if you deploy additional L3/L4 firewalls in front of the SBCs you must make sure that they do not restrict
legitimate traffic. You must allow SIP traffic (typically UDP/TCP port 5060), and if media anchoring is used also
unprivileged UDP ports. On the SBC you may take the opposite approach and restrict critical ports, especially if
no L3/L4 firewall is used. At least you shall make sure that traffic to privileged ports used for administration is
permitted only from trusted IP addresses.

More can be found in the Section Manual IP-layer Blocking .

Call Agents (CAs)

What SIP Devices does the SBC talk to?

Identify CAs by IP address, IP address range or DNS name. A CA may be physically a PSTN gateway, a whole
“cloud” of identical IP phones located in a subnet, a peering party, just anything with unique identification and
characteristics. Also specify if there is some specific treatment a CA shall obtain and that needs to be specified in
SBC rules. These frequently include:

• traffic limitations, i.e. will you impose one of these constraints on the traffic: RTP bandwidth, signaling
rate, number of parallel calls?

• mediation rules, i.e., do you to reconcile dialing plans, identity (URI) usage, header usage? Note that some
of these rules cannot be easily planned for ahead of time as they are used to fix protocol imperfections
discovered after fact in operation.

• NAT handling, i.e. does presence of NATs necessitate use of media relays, and shall the SBC handle traffic
symmetrically? (normally the answer is yes to both these questions if there are NATs present).

More details about traffic limitations are described in the Section Traffic Limiting and Shaping, mediation is
described further in Section SIP Mediation and media anchoring is described in more detail in the Sections NAT
Traversal and Media Anchoring (RTP Relay).

4.1. Network Planning Guidelines 19

FRAFOS ABC SBC Handbook, Release 5.3

Realms

What SIP Networks does the SBC talk to?

Most CAs belong to an administrative zone, whose traffic the SBC handles the same way. It would be impractical
to define traffic rules for every single CA in such a zone. Therefore the SBC uses the concept of Realms that group
all CAs sharing the same characteristics. For example a total bandwidth maximum restriction may be applied to a
whole cluster of peering partner’s PSTN gateways modeled as a Realm. Also identical header-field manipulation
and routing may be applied to all the machines in a Realm. Therefore the administrator needs to assign CAs to
the Realms and associate the common rules with the Realm. The functionality of Realms’ rules is the same as for
CAs.

4.1.2 SBC Logic

It is important to plan what the SBC will actually do for your network in precise terms because particular features
have further impact on capacity planning, integration with other components, interoperability and administration.

Routing

What will be the routing criteria used in your network?

Routing is a mandatory part of every SBC configuration. Once the topology is established, you must define how
traffic flows between the Realms and Call Agents. That is described in routing tables. The key decision to be made
is what is the criteria used to determine the next hop for a new session. The most common examples of criteria
include:

• prefix-based routing. This is frequently used when you have a number of PSTN gateways serving different
regions. Technically you match area codes against beginning of the user-part of the request URI.

• source-based routing. This is frequently used when you connect multiple IP networks and want to make
sure that all traffic from one network is forwarded to the other and vice versa. The criteria is then the source
IP address, source Call Agent or Realm.

• method-based routing. Sometimes specialized servers are used for processing specific traffic, like message
stores for keeping messages for off-line recipients.

• The SBC configuration options include even more criteria and these can be also combined with each other.

Some functionality is only present in some deployments and whether to use it or not depends on used equipment,
network characteristics and network policies. More information about administration of SIP routing may be found
in the Section SIP Routing.

Media Anchoring

Do you need the SBC to anchor media so that all RTP traffic visits your site?

The ideal answer is no due to latency and bandwidth concerns, the most common answer is yes due to NAT
traversal and controlling media. Relaying media costs considerable bandwidth and implies more SBC boxes. Yet
if any of the following conditions applies, you will have to enable media relay:

• There are SIP clients behind the NATs. That’s the common case in residential VoIP.

• You wish to record calls. Obviously you can only record media that visits the SBC.

• You want to implement topology hiding consequently and make sure that no party sees media coming from
any other IP than that of the SBC.

• The SBC connects two networks that are mutually unroutable.

More administrative details can be found in the Section Media Anchoring (RTP Relay).

4.1. Network Planning Guidelines 20

FRAFOS ABC SBC Handbook, Release 5.3

Media Restrictions

Do media-restricting rules need to be placed?

The need for media restrictions arises mostly when bandwidth is scarce. This may be the case if media anchoring
is used on a link from/to the SBC or on the SBC itself. It may be also the case on the link to the client, particularly
if it is a mobile one.

The simplest solution is to restrict media negotiated by Call Agents by putting desirable codecs on a whitelist. All
other codecs will be removed from codec negotiation. It may happen though that the resulting codec subset is
empty and the Call Agents would not be able to communicate with each other.

If there are no codecs left, you may extend the codec set by transcoding. The SBC then adds additional codecs
to the negotiation process and if the Call Agents choose it, the SBC will convert media to the chosen codec. The
penalty that needs to be considered is degraded throughput of the SBC.

In addition to the codec-based proactive bandwidth saving approach, the SBC can also limit bandwidth retroac-
tively and put bandwidth limits on CAs or Realms (or some portions of its traffic). This helps to stay on the
bandwidth budget even if SIP devices exceed traffic signaled in SIP. However, it remains a reactive measure. That
is, it does not prevent excessive traffic, it just drops it and impairs the affected media streams.

Codec handling is described in the Sections Media Type Filtering, CODEC Filtering, CODEC Preference and
Transcoding, administration of media limits is described in Section Traffic Limiting and Shaping.

Registrar Cache

Does the SIP traffic include REGISTER messages?

If so, we recommend that you do enable registrar cache. The cache is optimized to reduce the REGISTER traffic
that is passed down to the registrar. This is particularly important if the clients are behind NATs. Then the cache
must be configured to force SIP clients to re-register every minute to stay connected from behind NATs. Also
the ability to track registration status of users allows the SBC logic to differentiate call processing for online and
offline users. This can be used for example for voicemail routing.

Further administrative details are described in the Section Registration Caching and Handling.

NAT Handling

Are there some CAs behind NATs?

If so, you not only have to anchor media as described above, but also make sure that the signaling protocol
traverses NATs successfully. Also registrar-cache must be used to force clients to refresh their connectivity using
frequent re-registrations. Some deployments with STUN-capable SIP phones also set up a STUN server to assist
these phones.

NAT configuration is described in further details in Sections NAT Traversal and Media Anchoring (RTP Relay).

SBC High Availability

Shall the SBC be operated in high-availability mode?

While this is normally the case, small enterprise deployments may prefer buying and administering fewer boxes.
Introducing high-availability requires a standby spare machine for every active SBC and effectively doubles the
number of machines.

It is recommended that in a high-available configuration setup an administrative network is used for internal inter-
node communications and the availability protocol used between the machines in the active/standby pair.

More administrative details about HA mode are available in the Section High Available (HA) Pair Mode.

4.1. Network Planning Guidelines 21

FRAFOS ABC SBC Handbook, Release 5.3

Downstream Failover and Load-Balancing

Shall the SBC seek alternative destinations when primary destinations become unavailable?

Handling downstream failover may or may not be needed. For example if the downstream telephones are single-
user SIP telephones, there are usually no backup devices. Some high-density devices like PSTN gateways im-
plement automated failover in a way which is invisible to the SBC and the SBC doesn’t need to handle it either.
However if the primary destinations have spare backup machines without automated failover, the SBC can still
detect a failure and try the alternate destinations.

If there are multiple alternate destinations, it may be also practical to spread the load among them.

There are several ways how to define a set of alternate destinations and their priorities: it can be defined in DNS
maps or in the Call Agent specification. If the definition is managed in DNS, the SBC resolves DNS names
automatically in compliance with RFC 3263. If using DNS is not practical, the same effect can be achieved by
associating multiple IP addresses with a Call Agent. Additionally, a backup Call Agent may be also associated
with a Call Agent: in that case traffic to the backup destination will be processed by additional C-rules specific to
the destination.

Procedures for determining the next hop are described in Section Determination of the IP destination and Next-hop
Load-Balancing.

Dialing Plan Mediation

Do different CAs and Realms connect to the SBC use different dialing plans?

Often SBCs connecting different sites that use different numbering conventions: short-dials, regional dialing plans,
special services numbers. To enable interconnection of such sites and avoid number overlaps, the SBC must bring
all the numbers to a common denominator, mostly the E.164 numbering format.

More about mediation can be found in the Section SIP Mediation.

4.1.3 Security Policies

Generally, the SBC has two ways for protecting networks: putting various restrictions on traffic and concealing
network internals. The latter is sometimes a double-edged sword as obfuscation of SIP traffic makes it hard to
troubleshoot.

Restricting Traffic from Unwanted Sources

How do you identify and discard illegitimate traffic?

There are several ways the SBC recognizes and drops undesirable traffic.

At the SIP-level you may set a variety of criteria which if it is met results in declining a session request. The
conditions may include:

• unusual message patterns such as User-Agents of a type known to offend other SIP devices, URIs to pre-
mium numbers or simply anything else that can be matched

• unusual traffic patterns, such as call excessive call rate, number of parallel calls, or RTP bandwidth con-
sumptions

• The traffic patterns apply statically to a whole Realm or Call Agent. However they may be also tied dynam-
ically to “traffic from any single IP coming from the Realm” or “traffic to any single phone number”. This
way you could for example impose a Realm condition “maximum one parallel call from a single IP address
to a 900 phone number”.

Additionally, if traffic from some specific IP address begins to take really excessive dimensions, you can drop it
straight at the IP layer before it reaches the SBC logic.

4.1. Network Planning Guidelines 22

https://tools.ietf.org/html/rfc3263.html

FRAFOS ABC SBC Handbook, Release 5.3

More information about filtering unwanted traffic can be found in Section Police: Devising Security Rules in the
ABC SBC.

Topology Hiding

Do you prefer SIP transparency across networks or concealing network information?

This is indeed an operational dilemma. If you process SIP traffic “by standards”, the traffic will be passing the
SBC with minimum changes. This approach will reveal lot of information about one network to the other: which
IP addresses are being used, which port ranges, what type of equipment and potentially even more. This makes
life easier for attackers seeking security holes in networks and therefore some operators chose to obfuscate this
information.

The penalty for traffic obfuscation is significant however: operators’ administrators will find it similarly hard to
find out what’s is going on in their own networks. That doesn’t make troubleshooting easier. Some complicated
applications in which SIP messages tend to refer to each other (such as in call transfer) may also fail.

The choice to obfuscate or not is eventually to be taken by the operator. The ABC SBC has the following means
of doing that:

• Topology hiding rewrites known SIP header fields in which use of IP addresses is mandatory. The downside
is that troubleshooting becomes more difficult.

• Use of non-transparent mode will rewrite dialog-identifying information: from-tag, to-tag and Call-ID
which in some older implementations also includes IP addresses. The downside is some applications which
refer in protocol to a call may fail.

• Header whitelisting drops all header-fields that may potentially carry additional sensitive information, stan-
dardized (Warning, User-Agent for example) or proprietary (Remote-Party-ID for example). The downside
is that sometimes “a baby can be thrown out with the bath water”, when the header-fields include potentially
useful information.

• Media anchoring can be used to obfuscate where media flows from and to. The downside is high bandwidth
consumption and increased latency if media anchoring wouldn’t be used otherwise.

Additional information can be found in the Sections Topology Hiding, SIP Header Processing and Media Anchor-
ing (RTP Relay).

4.1.4 Capacity planning

Capacity planning is a key part of the planning exercise. Failure to provision resources sufficiently can lead to
network congestion and low quality of services. Overprovisioning way too far increases cost. The goal is to
find the right measure of network size that serves the anticipated traffic. This section provides rules of thumb
to estimate needed capacity and makes simplifying assumptions about state-of-the-art hardware, “normal” traffic
patterns and no dependencies on external servers. A more detailed discussion of dimensioning can be found in the
Section SBC Dimensioning and Performance Tuning.

Cluster Size

How many SBCs are required for a deployment?

There are two major factors that determine how many hosts you need to serve your traffic: anticipated performance
bottleneck and organization of clusters.

Which bottleneck is the most critical strongly varies with actual traffic patterns and services configured on the
SBC. A rule of thumb for a rough estimate of the performance of the ABC SBC on PC with three-1GB-Ethernet
and 12 GB of memory is this:

• If transcoding is used, the bottleneck of a single box in terms of the maximum number of parallel calls
which is about 1000. Otherwise. . .

4.1. Network Planning Guidelines 23

FRAFOS ABC SBC Handbook, Release 5.3

• . . . if media-anchoring is used, the bottleneck in terms of the the maximum number of parallel calls which
is about 5000. (Media overhead prevails even over heavy registration load.)

• Otherwise the limit is a call rate of 480 calls per second.

We advice to add at least additional 35% of buffer capacity to deal with variances in hardware performance,
increasing traffic patterns, too conservative traffic forecasts and DoS attacks.

Once you determined the per-box capacity, you need to take cluster organization in account. There are the follow-
ing three cases:

• a single SBC deployment: no scaling, no high-availability.

• high-available active/standby pair: the pair has still the total capacity of a single box, however it can survive
scheduled and unscheduled outages without service impairment

• high-available cluster: the number of boxes is determined by number of boxes needed to serve the target
capacity, doubled to achieve high availability plus two more boxes for a highly-available load-balancer:
cluster_capacity / box_capacity * 2 + 2.

Bandwidth

How much bandwidth needs to be allocated to serve the deployment?

To determine needed bandwidth you need to discriminate between two cases: using SBC with and without media
anchoring. The more bandwidth-hungry case is that with media anchoring. With the most commonly used codec,
G.711, a call consumes 197 kbps bandwidth in each direction.

To determine the maximum bandwidth needed calculate the product of maximum number of parallel calls by the
bandwidth specific to the codec in use, 197 kbps if it is G.711.

Public IP Address Space

How many public IP addresses need to be allocated for an SBC Cluster?

The minimum number is one shared VIP address for every active/standby pair.

4.1.5 IT Integration

An SBC is rarely a standalone component. More often it integrates with other components for the sake of connect-
ing to external policy logic, network monitoring, server naming and others. This section lists typical integration
options you may need to consider for your deployment.

RESTful interface

Does the SBC need to consult an external server for its decision making?

If so, the ABC SBC built-in RESTful query allows to ask an external server how a session shall be handled. This
query possibility allows to integrate external and complicated logic in the SBC which is customer-specific or for
other reasons difficult to integrate with the SBC directly.

See more in the Section RESTful Interface.

4.1. Network Planning Guidelines 24

FRAFOS ABC SBC Handbook, Release 5.3

Recording

For various reasons, audio recording may need to be configured. What needs to be integrated is access to the
recorded files. The easiest way is none: the recorded files are stored on local storage and accessed through the
events web-page. Uploading to HTTP may also be used. In either case, some deletion and retention policy must
be created, otherwise the local storage will be soon full.

See more in the Section Audio Recording.

Monitoring

Do you need to see how the SBC is doing?

Of course you do. We suggest use of the optional ABC Monitor as described in Section ABC Monitor (Optional)
as it provides ABC SBC administrators with full history of users and analytical tools to audit it.

You can also use SNMP at a third-party management console to inspect health of your ABC SBC and the networks.
It is possible to define your own custom counters. See more in the Section Using SNMP for Measurements and
Monitoring.

Mass Provisioning

Do you need to provision the SBC with lot of repetitive data such as thousands of Least-Cost-Routing Entries?

Then you certainly do not want to provision it rule by rule. Instead you devise one rule and fill it with data. The
actual data can comes over a web interface or RPC.

See more in the Section Provisioned Tables.

Call Detail Record (CDR) Exports

Do you need to access CDRs for sake of charging and reconciliation?

Then you must access the internally produced CDRs.

See the Section Call Data Records (CDRs) for more about CDR location, format and access.

DNS Naming

How do I make the SBCs known to their counter-parts?

While it is possibly to communicate with peer SIP-devices only using IP addresses we recommend that every
single SBC has a DNS name which is communicated as the point-of-contact to its peers. If nothing else, it makes
IP renumbering much easier should it occur.

DNS map entries for SIP servers follow the SRV DNS extension as described in RFC 3263.

4.2 Planning Checklists

This section provides you with a summary of questions raised in the previous section. We urge that you diligently
check all the items before you proceed with commencing an installation.

Topology

• Have you identified all Call Agents present in your network?

• Have you specified additional processing rules for these Call Agents, such as network limits?

• Have you grouped all Call Agents in Realms present in your network?

• Have you specified additional processing rules for these Call Agents such as network limits?

4.2. Planning Checklists 25

https://tools.ietf.org/html/rfc3263.html

FRAFOS ABC SBC Handbook, Release 5.3

• Have you specified all physical interfaces (Ethernet cards)?

• Have you specified all IP addresses, port ranges, and VLANs to be used on these interfaces?

• If there are firewalls in front of the SBC, have you verified that all needed ports are open?

• Have you verified that IP rules on the SBC restrict traffic to privileged ports from trusted IP addresses only?

SBC Logic

• Have you devised the SIP routing criteria used in your network? How many routing rules do you anticipate?

• Have you devised the routing flows between Realms and CAs?

• Does any of the conditions mentioned necessitate use of media relays?

• If you need to restrict codecs, which codecs shall be permitted and which codecs shall be restricted?

• Do you need to force use of a codec unsupported by a CA using transcoding? Which codec?

• If your SIP traffic includes REGISTER messages, will you enable registrar cache? If so, what will be the
registration interval?

• Does presence of clients behind NATs necessitate use of media-relay, symmetric SIP and registrar-cache?

• Do you plan to set up high-available SBC pair(s)?

• If you use the high-available (HA) SBC pair, do you plan to use an administrative network for the HA
protocol?

• If you need to handle downstream failover, have you devised appropriate DNS maps?

• Does the SBC accept traffic using different dialing conventions? If so, how will you translate between them?

Security

• What conditions do you devise to drop illegitimate traffic? Will you configure IP-based and/or URI-based
blacklists?

• Will you introduce traffic shaping limits: call-rate, call-length, parallel calls and maximum call-length?

• Will all or only registered SIP devices be permitted to make phone calls?

• Will the need to troubleshoot your network easily or the need to hide topology prevail?

Dimensioning

• How many SBCs do you need?

• How many network cards shall each SBC have?

• How many IP addresses do you need?

• How much bandwidth do you need in each direction?

Integration

• Do you plan to use the management components over a dedicated administrative network?

• Is external session decision-making logic using RESTful interface needed? If so, what are the parameters
passed from and to the RESTful server?

• Is SNMP monitoring needed? If so, what is the SNMP configuration data (IP address, SNMP community)?

• Do you need to mass-provision some configuration data? What is the structure of the data and what size of
tables do you anticipate?

• Do you need to record audio and access it? What is your deletion and retention policy for the stored audio
files?

• Do you need to export CDRs?

• Have you devised appropriate DNS SRV and A entries for all IP addresses?

4.2. Planning Checklists 26

FRAFOS ABC SBC Handbook, Release 5.3

4.3 A Typical SBC Configuration Example

Many SBC deployments, especially in smaller networks, follow a simple schema which is given through the
network structure. In this typical network, the SBC bridges between an internal network, where the home proxies,
PBXs and other servers like conference and application servers are located, and the public network, where the user
agents reside. Typically, in such a network the main motivations for deploying an SBC are

• network separation for security reasons

• foolproof and always-working NAT handling

• protection of the core network from high registration load

• protection against fraud by enforcing call limits

• possibility for monitoring and tracing for troubleshooting

This chapter presents step by step how to address these network aspects using the ABC SBC. It assumes an SBC
“sitting” between two networks, a public one with user telephones and a private protected one with operator’s
infrastructure.

4.3.1 Identifying Network topology

Simple as it is in this case, the network topology is shown in Sample network Topology.

Fig. 1: Sample network Topology

What administrator needs to do in this step is configuration of the physical network interfaces and of the SBC-level
interfaces.

The ABC SBC has two physical interfaces, one public connecting to the public networks, here with IP address
10.0.1.110, and one private connecting to the private network, here with IP address 192.168.1.110. The physical
interfaces are configured using procedures described in Section Physical and System Interfaces.

User agents are located in the public network and have IP addresses from any network, and they are configured to
use the public interface of the SBC with the address 10.0.1.110 as proxy (in a real world deployment, this address
would not be a private RFC1918 address, but a public one).

A proxy (or PBX) and a conference (or other application) server are located in the internal network. The ABC
SBC can communicate with the entities in the internal network through its interface in the private network which
has the IP address 192.168.1.110.

The detailed procedure for setting up SBC interfaces is described in Section SBC Interfaces. It links media
processing, signaling and administration with physical interfaces, IP addresses and port ranges.

4.3. A Typical SBC Configuration Example 27

FRAFOS ABC SBC Handbook, Release 5.3

4.3.2 Describing ABC SBC Realms and Call Agents

The network topology is described in the ABC SBC configuration by Realms and Call Agents. Call Agents are
typically consumer or operator SIP devices identified by their IP addresses or DNS names. They are grouped in
networks called Realms whose processing rules they share.

In our example two Realms are created in the SBC: public and internal_network.

Fig. 2: Creation of Realm

Fig. 3: Public and private Realms

In the Realm public, the call agent public_users is created with IP address 0.0.0.0/0, which means that public_users
can have any IP address, or: requests received from any IP address on the public interface will be identified as
coming from the Call Agent public_users. The address list can include multiple addresses that are used for
routing (See section Determination of the IP destination and Next-hop Load-Balancing). Also a backup call agent
can be defined here which can be used as alternate destination if forwarding to the primary destination fails.
The CA definition further specifies interfaces used for sending and receiving signaling and media and availability
management information – see Section IP Blacklisting: Adaptive Availability Management for more information.

The call agents could be assigned to SBC nodes and/or config groups. This assignment basically specify what
SBC nodes is the call agent known to.

4.3. A Typical SBC Configuration Example 28

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 4: Create public-users Call Agent

As we have neither defined a specific IP:port for the Call Agent nor a hostname, requests can be routed to that Call
Agent only by Request URI, or by setting the destination IP explicitly in the routing rule.

4.3. A Typical SBC Configuration Example 29

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 5: Public Call Agents list

For the internal realm, the call agents proxy and conference are created with IP addresses 192.168.1.121 and
192.168.1.122:5080 respectively.

Fig. 6: Internal Call Agents list

Provisioning Call Agents Using RPC

It is also possible to provision Call Agents using XML-RPC interface.

The following RPC commands for Call Agent provisioning are available:

• cagents.fetch() - fetch all the Call Agents

• cagents.insert($payload) - insert Call Agent

• cagents.update($payload) - update Call Agent

• cagents.delete($realm_name, $cagent_name) - delete Call Agent

The $payload parameter of the insert and update functions is structure of following format:

{
"realm": "Some_Realm_Name",

(continues on next page)

4.3. A Typical SBC Configuration Example 30

FRAFOS ABC SBC Handbook, Release 5.3

(continued from previous page)

"name": "Some_Call_Agent_Name",
"interface": "public_signaling",
"media_interface": "public_media",
"target": SEE_BELLOW
"transport": "UDP",
"backup_ca": {

"ca": "Backup_Call_Agent_Name",
"realm": "Name_of_Realm_Backup_Call_Agent_Belongs_To"

},
"backup2_ca": {

"ca": "2nd_Backup_Call_Agent_Name",
"realm": "Name_of_Realm_2nd_Backup_Call_Agent_Belongs_To"

},
"config_groups": ["Config_Group_Name"]
"attrs": {

"name_of_attribute_1": "value_of_attribute_1",
"name_of_attribute_2": "value_of_attribute_2"

}
}

For call agents identified by subnet, the target should look like this:

"target": {
"subnet": ["0.0.0.0/32"]

}

For call agents identified by IP address or DNS name, the target should look like this:

"target": {
"hosts": [

{ "addr": "192.168.1.1:5080", "weight": 10, "priority": 10 },
{ "addr": "192.168.1.2:5080", "weight": 10, "priority": 20 }

]
}

When updating Call Agent only the realm and name fields are mandatory, They identify the Call Agent to be
updated. If any of the other fields is not specified it is not changed by the update action.

4.3.3 Configuring Registration Cache and Throttling

REGISTER processing accommodates several goals: off-loading servers behind the SBC, enforcing frequent re-
registration load to keep NAT bindings alive and dealing with REGISTER avalanches caused by different sorts of
outages.

For REGISTER requests coming from the “public side”, the ABC SBC is configured to cache the registrations
using the Enable REGISTER caching action. The cache works as follows:

• For every new registration, it creates an alias, a special unique one-time identifier.

• It saves the original contact along with the alias in the local registrar cache.

• To facilitate NAT traversal, it also saves the IP address, port and transport with which the REGISTER was
received.

• It may re-adjust re-registration period so that it is frequent towards client for NAT keep-alives and less
frequent downstream for better performance.

• It replaces the Contact in the REGISTER with a combination of the alias and the SBCs IP address:
alias@SBC_IP:SBC_PORT.

4.3. A Typical SBC Configuration Example 31

mailto:alias@SBC_IP

FRAFOS ABC SBC Handbook, Release 5.3

This way, the “aliased” contact propagated downstream hides details of NAT-related address translation performed
at the SBC and manipulates re-registration period as needed. The cache entry becomes effective once the REGIS-
TER request is positively confirmed by the downstream SIP element.

Thus, when the REGISTER request is then routed to the registrar (the home proxy, here Call Agent proxy), the
alias@SBC_IP:SBC_PORT is saved as he registered contact address of the user at the registrar.

We define this rule in the A rules of the public Realm, so that it is executed for REGISTER requests coming from
any user agent defined under the Realm.

Fig. 7: Rule A Definition for caching REGISTERs coming from public realm

In order to protect the home proxy from the bulk of the registration load, the action REGISTER throttling is
enabled with a Minimum registrar expiration, i.e., the re-register interval used upstream to the home proxy, set
to the default of 3600 (one hour), while the Maximum UA expiration, i.e., the re-register period for the user
agents, is set to 30 seconds.

In cases where the call agent for the registrar have two destination addresses configured to work in a “round-robin”
fashion (e.g. same priority), it may be desired to force the subsequent re-registers to the same destination. In order
to achieve that, a rule similar to the following can be configured:

• A condition “Method Is -> REGISTER”,

• a condition “Register Cache -> Is Registered”,

• a rule “Fetch home-proxy IP”

4.3. A Typical SBC Configuration Example 32

mailto:alias@SBC_IP

FRAFOS ABC SBC Handbook, Release 5.3

Figure Register throttling destination binding shows this configuration on GUI.

Fig. 8: Register throttling destination binding

4.3.4 SIP Routing

The SIP routing tables (B tables) define to which Call Agent a call is forwarded. In our example, there are two
cases: calls from the UAs towards the proxy server and calls from the internal network towards the UAs.

Calls from the User Agents are routed towards the proxy with a simple rule. Here we route all calls from the
public realm to the proxy - we might also set a filter on Source Call Agent, which would be equivalent in our case.
We route by setting the next_hop (the destination IP address) directly.

4.3. A Typical SBC Configuration Example 33

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 9: Rule B Definition for the sample network

The next rule specifies routing of all calls from the internal network towards the registered UAs. If the home
proxy wants to send a call to a user, it finds in its registrar database the alias@SBC_IP:SBC_PORT as contact for
the user, thus it sends the call to the SBC with the alias in the request URI like this: INVITE sip:alias@SBC_IP:
SBC_PORT.

In the SBC, we use the action Retarget R-URI from cache (alias) to look up the UAs IP and port values and set
the request-URI to it. We also use the Enable NAT handling and Enable sticky transport options to handle
NATs properly. Using these options the SBC will send the request to the IP and port where the REGISTER request
was received from and using the same transport protocol it was received on.

4.3. A Typical SBC Configuration Example 34

mailto:alias@SBC_IP
sip:alias@SBC_IP:SBC_PORT
sip:alias@SBC_IP:SBC_PORT

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 10: Rule A Definition for internal CAs

We can then use the R-URI to determine request’s destination. For simplicity, in this example we define a catch-all
routing rule for the complete internal network, which includes all call agents defined there. (We may also define
special routing rules for the different call agents in the internal network if they would have to be treated separately,
e.g. if some calls need to be sent to a peering partner.)

4.3. A Typical SBC Configuration Example 35

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 11: Rule B Definition for internal-network Realm

4.3.5 Configuring NAT Handling and Media Anchoring

We have already used the NAT option in the Retarget R-URI from cache (alias) action above. In order to route
in-dialog requests to the caller properly even if the UA is behind NAT, we use the Enable dialog NAT handling
action. This will make the SBC remember the source address of the caller for the dialog and use that to send
in-dialog requests.

4.3. A Typical SBC Configuration Example 36

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 12: Rule A Definition for NAT handling

For the RTP to flow properly through different NATed users - and also from the internal network to the public
network for calls to conference bridge server - we Enable RTP anchoring with the Media far end NAT traversal
for UAC option enabled. To anchor the RTP of all calls at the SBC, we leave the Enable intelligent relay option
unchecked; if we want to reduce bandwidth consumption and latency (total mouth-to-ear delay), we can also
enable the intelligent relay option if we are sure that no users are behind double NATs. We enable this for calls in
both directions - from and to the UAs.

4.3. A Typical SBC Configuration Example 37

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 13: RTP Anchoring Rule Definition

Note well: it is important to realize that enabling Media far end NAT traversal for UAC will open a security
weakness subjecting the call to a so called RTP Bleed attack. It can be mitigated partially by using the Lock on
addresses learned from RTP option. Forcing usage of Secured RTP will effectively mitigate this attack as the
SRTP packets will be authenticated prior to the address learning step.

4.3.6 Configuring transparent dialog IDs

If we want to enable call transfers through the SBC, and to simplify troubleshooting, we can Enable transparent
dialog IDs.

4.3. A Typical SBC Configuration Example 38

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 14: Transparent Dialog Rule Definition (A)

4.3.7 Setting up tracing

In the testing phase, we can enable tracing for calls with the Log received traffic action.

Fig. 15: Tracing Rule Definition (A)

In production use we should not forget to disable or remove this rule to protect the privacy of the users and to
reduce processing power and disk space requirements at the SBC host.

4.3. A Typical SBC Configuration Example 39

FRAFOS ABC SBC Handbook, Release 5.3

4.3.8 Summary of rules

The rules we have created so far can be seen in the Overview screen. The rules implement so far routing from
the external to the private network and vice versa, recording traffic in PCAP files, NAT handling and registration
caching and throttling.

Fig. 16: Rule list for sample network

4.3.9 Setting Call Limits

In order to reduce the risks of fraud, we can set some limits on traffic coming from the external network as shown
in Figure Limiting calls and traffic:

• a parallel call limit of 10 for calls coming to the realm from the same source IP address ($si)

• a limit of 5 calls coming to the realm from the same user ($fU)

• a limit of call attempts per second (CAPS) of 10 for the calls coming to the realm from the same source IP
address ($si)

• and a limit of 120 kbit/s for every single call coming to the realm - sufficient bandwidth for audio calls only.
For video calls you might want to use a higher value.

For the limits per source IP address, it has to be noted that the limits may apply to a group of users if they are
behind the same NAT. If for example there are enterprise users, we may group them into a separate Realm with a

4.3. A Typical SBC Configuration Example 40

FRAFOS ABC SBC Handbook, Release 5.3

different, higher limit and/or group by a combination of IP address and domain name.

We set these limits in calls from the external realm.

Fig. 17: Limiting calls and traffic

4.3. A Typical SBC Configuration Example 41

FRAFOS ABC SBC Handbook, Release 5.3

4.3.10 Blacklisting specific IPs and User Agents

We can use a rule to block calls from a specific IP address.

Fig. 18: Blacklisting IP addresses

And also specific User Agent types, for example SIP scans from sipvicious which works if the User Agent header
string is unchanged.

4.3. A Typical SBC Configuration Example 42

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 19: Rejecting calls from certain user agents

4.3.11 Handling P-Asserted-Identity

The P-Asserted-Identity header is usually used within a network to signal the caller, if the identity is asserted, e.g.
if it is signaled from a trusted source.

The P-Asserted-Identity header should usually only be trusted if it was set by some element in the internal net-
work, e.g. by the home proxy after authentication. Hence, for requests coming from an external network it is
recommended to remove the P-Asserted-Identity header*.

4.3. A Typical SBC Configuration Example 43

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 20: Remove P-Asserted-Identity header from untrusted requests

4.3.12 Where to go from here

This section described a typical initial configuration for a simple use case and a simple network topology.

Going further from here, various use cases that are solved with the ABC SBC are explained in various sections of
this document:

• Interworking with various types of PBXs requires often very specific SIP mediation actions which can be
implemented using special rule sets, see Defining Rules and SIP Mediation.

• Quality of calls with the Enterprise trunking use case can be improved by using intelligent RTP relay han-
dling, see Media Handling for more details.

• Mobile clients may benefit from specific codec handling and transcoding. See Media Handling for more
details.

• For more security mechanisms, refer to chapter Securing SIP Networks using ABC SBC and ABC Monitor
(optional).

• Least cost routing can be implemented using Provisioned Tables. See Provisioned Tables for more details.

• For billing, the SBC can generate call data records (CDR). See Call Data Records (CDRs) for more details
on how to use the CDRs and customize them.

• Both usage and the SBC host itself can be monitored through SNMP, see Using SNMP for Measurements
and Monitoring.

• System administration tasks like backup, maintenance and upgrades are explained in chapter ABC SBC
System administration.

4.3. A Typical SBC Configuration Example 44

Chapter 5

Installing the ABC SBC

5.1 Types of Installations: Container and Cloud-based

The ABC SBC is distributed in form of a container (systemd or OCI type). It can be run on operating system of
customer choice, if the OS supports running of those container types.

FRAFOS also offers an Amazon cloud based solution where the ABC SBC and ABC Monitor is running as an
instance in AWS (EC2). This is by far the fastest installation, the software can be started by several clicks. See
Sections Amazon Elastic Cloud Configuration Cookbook and ABC Monitor Installation Off AWS (optional).

FRAFOS can also provide a hardware based solution with preinstalled ABC SBC software on a reference hard-
ware, see Hardware Requirements for more details.

5.2 Hardware Requirements

FRAFOS ABC SBC is provided as container, internally based on Debian 12 64bit operating system (x86_64
architecture).

Capacity and performance of the system depends mainly on the number and type of processors (CPU), available
operating memory (RAM) and the number and performance of network cards (NIC).

There are no specific constraints for vendors of hardware and components, but we do have some suggestions
and recommendations for the used hardware and its settings. Generally amount of memory and CPU power in-
creases system resilience against load peaks, Ethernet cards with high packet rate facilitate high media anchoring
throughput and fast solid-state drives facilitate WAV and PCAP recording.

Minimum hardware:

• CPU: 1x processor - 64bit architecture

• RAM: 4 GB

• NIC: 1x 1Gb network card

• HDD: 10 GB

Recommended / reference hardware: Fujitsu Primergy RX1330 (M3 or M4)

• CPU: Intel® Xeon® processor E3-1200 family, 4GHz

• RAM: 64 GB (DDR4 2666 MHz, dual channel)

• NIC: 2 x Intel 1Gb adapter

• SSD: 2 x 256 GB

For more details about system capacity and dimensioning, see Sec. SBC Dimensioning and Performance Tuning.

45

FRAFOS ABC SBC Handbook, Release 5.3

5.3 Deployment Modes

According to the system dimensioning and high-availability requirements, ABC SBC can be deployed in different
modes:

5.3.1 Single Node Mode

In single node mode a single ABC SBC container is used. It is necessary to connect this node to a CCM module
which provides GUI for administration of system and serves as a configuration master to all connected ABC SBC
nodes. The CCM module is distributed as a single container and can be either deployed on the same host together
with ABC SBC node or on a different server.

5.3.2 High Available (HA) Pair Mode

IMPORTANT note: up to ABC SBC release 4.1, it was using HA solution based on Pacemaker. The ABC SBC 4.2
was a transitional release that removed Pacemaker based HA solution. The new HA solution based on keepalived
was introduced in ABC SBC 4.3 release.

HA pair ABC SBC installation is formed by two physically identical servers running in an active/hot-standby
configuration. Only the active (HA master) server processes signaling and media traffic. In case of any failure,
the internal management system performs a failover where the originally standby (HA backup) machine becomes
active. Switching the active and standby operation modes is also useful during the upgrades of the system.

Both the HA master and backup servers share virtual IP addresses (VIPs) and communicate with each other over
the “Internal Management Interface” - IMI. The HA backup server can check the availability of the HA master
server. Once the HA backup server determines that the HA master server is no longer available then the backup
server will assume the role of HA master and take over the VIPs used for receiving and sending the media and
signaling messages.

Further, the HA master server replicates state information about running sessions to the HA backup machine.
Thereby, after a failover the backup server will be able to continue processing already established calls and the
failure of the server will not result in dropping of already established calls. Note however that calls are replicated
after they are established and calls unanswered yet may be dropped. Also only signaling over connection-less
transport protocols is certain to reach the Call Agents as transport protocol context gets lost during failover.

5.3.3 Cluster based solution

For very high traffic and performance requirements, ABC SBC instances (in a single or HA pair mode) can create
a cluster. A SIP load balancer is put in front of these cluster nodes so as to distribute the SIP traffic to a particular
ABC SBC instances.

5.4 Installation Procedure

The ABC SBC can be installed as container, using systemd nspawn or OCI type containers, on top of an operating
system of customer choice.

Before actual installation admin should consider enabling coredumps on the host, see Coredumps. It may be
beneficial to have them enabled in advance, to ease later troubleshooting but it needs to be considered that whole
host and all containers running there will be influenced.

5.3. Deployment Modes 46

FRAFOS ABC SBC Handbook, Release 5.3

5.5 Installation Procedure - systemd container ABC SBC install

In this section we describe the installation process of the ABC SBC systemd container.

The provided ABC SBC container image is a systemd-nspawn container type. It can be unpacked into separate
directory and started from there on operating system of customer choice, which has to be able to run the systemd
type of containers, like CentOS or Debian Linux (64bit “x86_64” architecture). The recommended OS to use is
Debian 12 stable.

Note: if the host OS supports “selinux”, it has to be disabled, because selinux policy is applied also to containers
running on the host, and ABC SBC is not able to work with the selinux policy set to enforcing. Also, if the host
OS uses “AppArmor”, it may need to be either tuned or disabled, to not limit some processes inside the ABC SBC
container (like “tcpdump” process).

The exact way of how to start and manage the container depends on the operating system choice and the tools
provided by it, like the “machinectl” command. This section lists just general examples and recommendations,
based on Debian 12 OS.

The package “systemd-container” has to be installed first:

% apt install systemd-container

Different network modes can be used on the host:

• So called “host network”: the network interfaces are configured on the host server and are shared with the
container, and the container itself cannot change any network system settings. Also the proper firewall rules
have to be set on the host server, or firewall disabled on it (if firewall is either not needed, or there is separate
firewall in the customer network).

• IPvlan or Macvlan network modes: a separate sub-interface is created on the host for the container. The
container gets it’s own separate IP address, which has to be configured inside the container (either static or
dynamic one). Using this mode, the container can also set own iptables based firewall rules. Also, as the
container network is not shared with the host network, it is possible to deploy more containers on the same
host without possible port conflicts troubles.

The recommended network mode to use is Macvlan. The IPvlan mode can be also used, but has some limitations
like it cannot be used if common DHCP server is used, because the DHCP server would need a unique MAC
address which IPvlan does not have.

It is recommended to use different hosts for SBC container and CCM container. An ABC Monitor container can
be deployed on the same host as CCM container. The SBC and CCM, or SBC and Monitor containers cannot
share the same host, unless network model is used which provides some form of networking / loopback isolation,
to prevent port conflicts.

For the ABC SBC container to run properly, it is necessary to disable SELinux on the container host machine,
if SELinux is enabled. Under Debian, it is usually disabled by default. On CentOS 7 it is usually enabled and
can be disabled by editing “/etc/selinux/config” file and setting “SELINUX=disabled” (takes effect on boot), plus
running the following command to set it on the running system:

% setenforce 0

We assume example container name “testsbc” and image file “frafos-sbc-5.0.0.tgz” used in the following steps.
Note that the container name corresponds to the directory name, where container is unpacked.

All the commands should be executed under “root” (or equivalent) user.

5.5. Installation Procedure - systemd container ABC SBC install 47

FRAFOS ABC SBC Handbook, Release 5.3

5.5.1 Unpack the container image

The ABC SBC container is provided in form of gzip tar file. After getting it from Frafos repository or file server,
copy it to the target hosting server.

Create a directory for the container, on a partition with enough space. The recommended default path is
“/var/lib/machines/<name>”:

% mkdir -p /var/lib/machines/testsbc

Unpack the container image into that directory. Make sure the correct tar options are used to keep all permissions,
ownership and attributes:

% tar --xattrs -p --numeric-owner -C /var/lib/machines/testsbc \
-xzf frafos-sbc-5-0-0.tgz

5.5.2 Prepare directory for persistent data

This step is optional, but highly recommended. A separate directory, different from the base one containing the
unpacked container, from the host server can be “mounted” to the container on startup and used for data that
is expected to be persistent in case of container replacement (e.g. when replacing with newer version). This
directory is seen as “/data” path inside of the container, and is used for some basic configuration files, traffic
pcaps, recordings, backups etc. If separate directory from the host server is not used, the “/data” path is created
just under the basic directory holding the container, and is lost if whole container is replaced.

Create directory for ABC SBC data under some host server partition with enough disk space, like:

% mkdir -p /var/data/testsbc

Note: if more containers are expected to be run on the same host server, make sure each of them uses own separate
directory for “/data”. Do not use one common path for more containers.

5.5.3 Create container systemd config file

These steps are based on Debian used as host OS, which is the recommended and tested one. If using CentOS 7,
please skip to later Managing the containers under CentOS 7 section.

If some specific settings are needed for the container, different from defaults, a systemd nspawn config has to be
created for the container:

First create a directory:

% mkdir -p /etc/systemd/nspawn

Then edit a new file like “/etc/systemd/nspawn/testsbc.nspawn” with content similar to:

[Network]
MACVLAN=ens3
[Exec]
PrivateUsers=off
[Files]
Bind=/var/data/testsbc:/data

Adapt the settings according to networking mode used, system interface name(s) and the persistent /data path
location.

Details:

• The “MACVLAN=<system interface name>” option enables the Macvlan networking mode, and results in
a sub-interface “mv-<interface name>” to be visible inside the container.

5.5. Installation Procedure - systemd container ABC SBC install 48

FRAFOS ABC SBC Handbook, Release 5.3

• The “Bind=. . . ” option takes two directories separated by colon. The first is the host directory prepared for
persistent data, which will be mapped under the second directory (“/data”) path inside the container.

5.5.4 Optional: configure container network interface(s)

If the “host network” mode is used, where container shares the interface with host, this section can be skipped.

If the Macvlan or IPvlan network mode is used, which provide separate network sub-interface for the container,
then the network has to be configured inside the container.

Create one or more system interface(s) configuration files in “/data/interfaces.d” directory of the container. That
directory can be accessed usually from the host using path like “/var/lib/machines/testsbc/data/interfaces.d”, if
persistent “/data” path is not used, or under the host path where the persistent “/data” mount is available for the
container, even before starting the container.

Create a new file in that directory, with content similar to this, if DHCP is used:

auto mv-ens3
iface mv-ens3 inet dhcp

Or similar to this, if static IP address is used:

auto mv-ens3
iface mv-ens3 inet static

address 192.168.0.123
netmask 255.255.255.0
gateway 192.168.0.1

Notes:

• The interface name has to correspond to sub-interface name which the host OS creates for the container.
Usually, it is named like “mv-XXX” where the “XXX” is the original host side network interface name.

Refer to “man interfaces” man page for more details about the network interface config file options.

5.5.5 Manage the containers

To list running containers, use:

% machinectl list

To start a container, use:

% machinectl start testsbc

To stop running container: use either “poweroff” command inside the container, or use the following command
on host:

% machinectl poweroff testsbc

To connect to the container console from the host server, use the following command:

% machinectl shell testsbc

For more details, refer to “man machinectl” man page.

5.5. Installation Procedure - systemd container ABC SBC install 49

FRAFOS ABC SBC Handbook, Release 5.3

5.5.6 Managing the containers under CentOS 7

This section applies only to CentOS 7, where the native method of managing containers using “machinectl”
command has some limitations, so we recommend to create a new separate systemd service for each container.

Create systemd service file

The container can be started directly from command line using “systemd-nspawn -bD <dir>” command, but
usually it is desirable to use a separate systemd service for it, which allows automatic start and better management
of the running container.

Create a new systemd service file for the container, by creating file like “/etc/systemd/system/testsbc.service” with
content like:

[Unit]
Description=Test Sbc Container

[Service]
ExecStart=/usr/bin/systemd-nspawn --machine=testsbc \
--directory=/var/lib/machines/testsbc/ -b \
--bind /var/data/testsbc:/data
Restart=always

[Install]
WantedBy=multi-user.target

Notes:

• If the persistent directory for “/data” was not created in the previous step, remove the “--bind /data/
testsbc:/data” option.

• Adapt the “/var/data/testsbc” path to reflect the actual host directory used for persistent data.

• The “Restart=always” option makes the container to be restarted automatically in case it stops for whatever
reason. It can be changed to “Restart=no” if needed.

Call command to update systemd services:

% systemctl daemon-reload

Start and manage the container

Use the following command to start the container:

% systemctl start testsbc

If it should be started automatically on host server boot, use:

% systemctl enable testsbc

To check status, the following command can be used:

% systemctl status testsbc

To list all running containers:

% machinectl list

To connect to the container console from the host server, use the following command:

5.5. Installation Procedure - systemd container ABC SBC install 50

FRAFOS ABC SBC Handbook, Release 5.3

% machinectl shell testsbc

Please refer to the machinectl man page for more information on how to interact with systemd-nspawn containers.

5.6 Installation Procedure - podman containers

In this section we describe the OCI podman container installation process for the ABC SBC, the Cluster Config
Manager and the ABC Monitor. The procedure is based on podman 4.3.1 used on Debian 12.

Please refer to the official documentation for more detailed information.

5.6.1 Installing podman

Since Debian 11 the podman package is available in official repositories and can be installed on host with Debian
OS via:

% apt install podman

5.6.2 OCI images download

Start by downloading the OCI images directly from Frafos’s docker registry (registry.frafos.net) using the follow-
ing:

% podman pull registry.frafos.net/abc/sbc:5.3
% podman pull registry.frafos.net/abc/ccm:5.3
% podman pull registry.frafos.net/abc/mon:5.2

Frafos’s OCI tagging strategy is the following:

• 5.0.[0,100]: the tag match the image exact version (5.0.1, 5.0.2)

• 5.0: alias to the latest 5.0.X image for the major release

• 5.0-XX: alias to an exact 5.0.X image (5.0-rc1, 5.0-dev)

One may also run the following to pull the desired exact images:

% # exact minor release
% podman pull registry.frafos.net/abc/sbc:5.0.42
% # test the release candidate
% podman pull registry.frafos.net/abc/ccm:5.0-rc1
% # test the "latest" 5.0
% podman pull registry.frafos.net/abc/mon:5.0

OCI images signature verification

Starting 5.3.9, OCI image available on the public registry (registry.frafos.net) are signed by using the cosign
utility. Image may be verified using the following:

$ cosign verify --key frafos.pub registry.frafos.net/abc/sbc:5.3.9

The Frafos certificate can be found at https://doc.frafos.com/keys/cosign.pub

5.6. Installation Procedure - podman containers 51

https://podman.io/docs
https://doc.frafos.com/keys/cosign.pub

FRAFOS ABC SBC Handbook, Release 5.3

5.6.3 Networking

There are many ways how to configure networking with podman which may vary use case by use case. For
simplification we will focus on the most common scenario only: separate MACVLAN networks for management
and VoIP traffic. This configuration allows multiple containers (Cluster Config Manager, ABC Monitor, ABC
SBC) running on the same host or on different hosts, depending on desired performance and other requirements.

Since podman 4.x the podman network create can be safely used to create appropriate podman’s networks,
while on podman 3.x - which was official part of Debian 11 - this didn’t work properly.

Network configured by podman

Interface configuration like IP assignment, DNS, etc. can be passed to the container by podman. For this purpose
it is necessary to create a network with proper parameters:

% podman network create \
-d macvlan \
-o parent=enp7s0 \
--gateway 172.22.31.1 \
--subnet 172.22.31.0/24 \
mgmt

If default gateway should not be configured inside the container for particular network, skip the --gateway
option and add --internal option when creating the network, like:

% podman network create \
-d macvlan \
-o parent=enp8s0 \
--internal \
--subnet 172.22.32.0/24 \
imi

Then set proper parameters when starting the container later:

% podman run ... \
--network=mgmt:ip=172.22.31.100,interface_name=eth0 \
--dns=172.22.31.2 \
...

In this case the container’s interface eth0 is connected to the MACVLAN network on top of host’s physical in-
terface enp7s0, uses given default gateway and the container is started with the specified IP from the appropriate
subnet. Given DNS server is propagated to the container’s /etc/resolv.conf.

One drawback of podman network created as described above is that it creates even default route on the interface.
If a container is using multiple interfaces created this way, there are multiple default routes (with the same metric)
and it may happen, that they are seen in random order in the container.

Note: with phe podman 4, it doesn’t seem to be possible to configure static routes. The option --route is not
supported, even if described in the documentation. But if static routes are needed, they can be set up using the
network configured inside container, as described in next section.

5.6. Installation Procedure - podman containers 52

FRAFOS ABC SBC Handbook, Release 5.3

Network configured in container

Interfaces can be controlled from the container itself what can be beneficial if more detailed control is necessary.

For this purpose create podman’s network with IP Address Management Driver set to none:

% podman network create -d macvlan -o parent=enp8s0 --ipam-driver=none pub

and configure proper interface configuration files in /data/interfaces.d as described in Optional: config-
ure container network interface(s).

For example in case eth1 is used as interface name there can be /data/interfaces.d/eth1 file with
following content created in the container:

auto eth1
iface eth1 inet static

address 172.22.11.100
netmask 255.255.255.0
gateway 172.22.11.1

The container will be started like:

% podman run ... \
--network=pub:interface_name=eth1 \
--cap-add=NET_ADMIN \
...

The NET_ADMIN capability is necessary in this case to allow the container to initialize the network properly.

If static routing configuration is needed, it can be configured by adding line(s) to run command to bring the route
up to the interface config, similar to:

auto eth1
iface eth1 inet static

address 172.22.11.100
netmask 255.255.255.0
gateway 172.22.11.1
up route add -net 172.17.0.0 netmask 255.255.255.0 gw 172.22.11.123

5.6.4 Persistent data

It is highly recommended to use persistent /data directory for the container, where all configuration, that needs
to be preserved across upgrades, is stored.

This can be reached either by mounting an external directory from the host into the container’s /data directory:

% mkdir -p /var/data/ccm
% podman run ... -v /var/data/ccm:/data ...

or by using a podman volume for it:

% podman volume create ccm-data
% podman run ... --mount type=volume,src=ccm-data,target=/data,rw=true ...

In the first case, the storage is fully under administrator’s control and can be accessed not only from containers,
but directly by other processes as well. This can be beneficial for downloading CDRs from ABC SBC, for backups
generated from host or for mounting a specific partition if huge data volumes may be expected (ABC Monitor).

In the second case, the storage is fully managed by podman and can be accessed only from containers or via
podman commands. This may be sometimes limiting and thus in general rather not the recommended way.

5.6. Installation Procedure - podman containers 53

FRAFOS ABC SBC Handbook, Release 5.3

5.6.5 Container management

Start the containers

The Cluster Config Manager container can be created with an already existing management network, explicitly
configured DNS server (available through the management network), host’s directory mounted into /data to
allow data persistence and proper capabilities:

% mkdir -p /var/data/ccm
% podman run \

--name ccm \
--hostname ccm \
-d --tty \
--network=mgmt:ip=172.22.31.100 \
--dns=172.22.31.2 \
-v /var/data/ccm:/data \
--cap-add=AUDIT_WRITE \
--cap-add=AUDIT_CONTROL \
registry.frafos.net/abc/ccm:5.3

The ABC Monitor container can be created similarly to Cluster Config Manager mounting /data directory and
using the management network with explicitly specified IP address and DNS server:

% mkdir -p /var/data/mon
% podman run \

--name mon \
--hostname mon \
-d --tty \
--network=mgmt:ip=172.22.31.101 \
--dns=172.22.31.2 \
-v /var/data/mon:/data \
registry.frafos.net/abc/mon:5.2

The ABC SBC container needs to be created with management and VoIP networks and additional capabilities
related to network management and access:

% mkdir -p /var/data/sbc
% podman run \

--name sbc \
--hostname sbc \
-d --tty \
--dns=172.22.31.2 \
--network=mgmt:ip=172.22.31.51,interface_name=eth0 \
--network=pub:interface_name=eth1 \
--network=priv:interface_name=eth2 \
-v /var/data/sbc:/data \
--cap-add=NET_ADMIN \
--cap-add=NET_RAW \
--cap-add=AUDIT_WRITE \
--cap-add=AUDIT_CONTROL \
registry.frafos.net/abc/sbc:5.3

NET_ADMIN capability is necessary for admin access to network, while NET_RAW is needed for raw sockets
usage and additionally for troubleshooting purposes (for example to allow ping utility).

The AUDIT_WRITE and AUDIT_CONTROL are capabilities that allow writing records into kernel auditing log
and control over the kernel auditing. These capabilities may be needed only in case a SSH daemon shall be started
inside the container.

We assume pub (eth1) and priv (eth2) networks being configured from the container while the mgmt (eth0) network
settings is given by podman in this case.

5.6. Installation Procedure - podman containers 54

FRAFOS ABC SBC Handbook, Release 5.3

Other management commands

To list running containers use:

% podman ps

To list even stopped containers:

% podman ps -a

To stop a running container use:

% podman stop sbc

The parameter -t might be used to avoid killing the container if it is shutting down too slowly. It is recommended
to be used (especially in case of ABC Monitor container):

% podman stop -t 120 mon

To start the stopped container again:

% podman start mon

Executing commands within the container

To open a shell inside the container, use the following command on the host server:

% podman exec -it sbc bash

Another commands can be executed directly similar way:

% podman exec -it sbc ip route

Checking journal

One may check the container’s systemd journal either using podman logs:

% podman logs -f ccm

or via executing journalctl command in the container:

% podman exec -it ccm journalctl -f

5.6.6 Upgrade Procedure

For a container upgrade, please start by pulling the newest images:

% podman pull registry.frafos.net/abc/sbc:5.3
% podman pull registry.frafos.net/abc/ccm:5.3
% podman pull registry.frafos.net/abc/mon:5.2

You may check the latest images metadata using:

% podman image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.frafos.net/abc/ccm 5.3 bc3c1b61316a 2 hours ago 1.03 GB
registry.frafos.net/abc/sbc 5.3 574b44e60f30 5 hours ago 1.25 GB

(continues on next page)

5.6. Installation Procedure - podman containers 55

FRAFOS ABC SBC Handbook, Release 5.3

(continued from previous page)

<none> <none> 655cf4d30cbf 24 hours ago 1.25 GB
<none> <none> 8e0eb0df41c0 24 hours ago 1.03 GB

To re-create and re-start the container (ABC SBC in this case), using the newest image, stop and remove the
original container first:

% podman stop sbc
% podman rm sbc

and then start the container from the appropriate image again:

% podman run \
--name sbc \
--hostname sbc \
-d --tty \
--dns=172.22.31.2 \
--network=mgmt:ip=172.22.31.51,interface_name=eth0 \
--network=pub:interface_name=eth1 \
--network=priv:interface_name=eth2 \
-v /var/data/sbc:/data \
--cap-add=NET_ADMIN \
--cap-add=NET_RAW \
--cap-add=AUDIT_WRITE \
--cap-add=AUDIT_CONTROL \
registry.frafos.net/abc/sbc:5.3

One may then remove the unused images (old, untagged variant), using:

% podman image prune
WARNING! This will remove all dangling images.
Are you sure you want to continue? [y/N] y
8e0eb0df41c0c9c8cb6c8154b5fc7f4979869ede92febc7f220b4b6a08ebf133
655cf4d30cbf018198f096bf059283eda27c9f9b0073f92ae748af74316e6be4

5.6.7 Systemd integration

The container life time may be handled trough systemd service manager. To do so, we recommend to generate the
container service file from an existing container using following command:

% podman generate systemd -n ccm --new > /etc/systemd/system/ccm.service

The --new parameter is necessary if the service file is going to be used even across container upgrades or re-
placements.

After generating the service file it is necessary to reload systemd services:

% systemctl daemon-reload

And then the new service can be used to control the container:

% systemctl enable ccm
% systemctl restart ccm

To upgrade container to the latest version within the same release, it is enough to pull latest container image and
restart the service:

% podman pull registry.frafos.net/abc/ccm:5.3
% systemctl restart ccm

5.6. Installation Procedure - podman containers 56

FRAFOS ABC SBC Handbook, Release 5.3

5.7 Initial Configuration

5.7.1 SBC Interfaces Overview

The ABC SBC uses five types of logical interfaces for management, signaling and media processing:

• IMI - Internal Management Interface - used for inter-node communication (in HA pair or between CCM
and SBC node)

• SI - Signaling Interface - for SIP signaling (multiple SI interfaces can be configured)

• MI - Media Interface - for media (RTP/RTCP) processing (multiple MI interfaces can be configured)

• WS - Websocket Signaling - for SIP signaling over Websockets.

• CI - Custom Interface - for different applications specified by admin

Important: Before the following initial configuration, it is important to have all physical interfaces used by
the SBC’s logical interfaces configured and working (IP addresses and IP routing). Also, the hostnames of the
machines have to be set, as they are used in initialization scripts and for distinguishing SBC nodes.

5.7.2 Web GUI Configuration (Cluster Config Master)

ABC SBC has two parts, installed as two separate containers: the configuration master aka Cluster Config Manager
(CCM) which provides configuration GUI web interface, and one or more SBC nodes. Depending on the config
synchronization mode (pull or push), the SBC nodes will either :

• automatically pull new configuration from the CCM

• receive a new configuration request from the CCM

The centrally configured configuration elements include ABC rules, Interfaces, Global Config Provisioned Tables,
Realms, Call Agents, SNMP configuration data and Firewall Rules.

The CCM will ask to create username and password for configuration GUI admin access on first login into GUI.
New GUI user will be created and added to “SBCadmins” GUI group. Minimum password length is 8 characters
and it must not contain spaces.

It will also ask for setting username and password that will be used to authenticate the nodes to the configuration
master when performing configuration pull or node status push. Note that this is different username / password
than for the GUI access. The password must not contain spaces.

All ABC SBC nodes need to know which server is CCM in order to pull automatically new configuration from it.

Perform the following command on all ABC SBC nodes (not on CCM):

% sbc-init-config

It will prompt for the following settings by default:

• Address of the Configuration Master Server. On SBC nodes provide either IP address or DNS name which
resolves to IP address of the CCM.

• The administrative domain. For usual installations just press Enter to use “default” administrative domain.
For installation where administrative domains are used, enter name of the administrative domain this SBC
node belongs to.

• Node UUID. If it is left empty either existing node UUID will be used or new will be generated if none was
existing. If a specific node UUID is required, enter it.

• SBC’s certificate and key used for TLS connection between SBC and CCM. It can be left empty in con-
fig pull mode when CCM does not verify client certificates. For configuration push mode or for secured
installation, where client certificate is used when pulling configuration from config master node, enter full
path to filename with the client certificate for the ABC SBC node being configured. The file has to be in
PEM format and has to include both certificate and key in one file. The configuration master will verify the

5.7. Initial Configuration 57

FRAFOS ABC SBC Handbook, Release 5.3

client certificate if the option “Verify peer certificate” is enabled in CCM configuration on “CCM to SBC
authentication” tab.

• Select if a certificate of the configuration master should be verified by this SBC node. For installation
that uses default TLS profile with automatically generated self-signed certificate choose No, for secured
installation choose Yes. If Yes was selected then provide full path to CA certificate file (in PEM format) in
following prompt.

• Configuration synchronization mode. Select either pull (SBC node pulls configuration from the CCM) or
push (CCM pushes configuration to the SBC node). If push was selected as synchronization mode then
provide IP address to listen on for the node configuration server. Usually the IMI interface IP address
should be used. It is possible to leave this field empty in which case the node configuration server would be
listening on all interfaces. Please note, listening on all interfaces might be a security problem as SBC node
might have public interfaces.

• Username and password that is used to authenticate the access to configuration master when performing the
config pull or the node status push. Use the same username and password as set when the first GUI login to
CCM was performed.

• Optionally the root user password can be set. By default the container comes with no root user password
set, which allows to access the container shell only directly from host system. If e.g. ssh access to the
container is needed, using password authentication, the root user password has to be set. Note: if the root
user password change is needed later, it can be done also using “sbc-passwd” command. This command
should be used instead of usual system “passwd” command, as apart from setting the password it also saves
a backup copy of it to possibly persistent location under /data path, from which the password is recovered
automatically in case of new container start after container replacement with newer version.

Configuration synchronization in pull mode

If pull was selected for the SBC node configuration synchronization, the SBC node should try to pull from the
CCM new configuration every 15 seconds. Please note, the configuration needs to be Activated first before being
pulled by the node.

The process is handled by the sbc-pullconf systemd service.

Note that it’s the sbc-status-checker service that reports the configuration synchronization mode to the CCM.

Configuration synchronization in push mode

If push was selected for the SBC node configuration synchronization, it is up to admin to “manually push” a new
configuration once it is activated:

• edit the configuration via the CCM web interface

• click the “Activate” button

• once the configuration is activated, the GUI redirects to the config push screen. This screen is also accessible
from System –> Config push

• select one or more nodes to which you would like to push a new configuration, and click on “Push to
selected” button

• if a new configuration should be pushed to all SBC servers then click the “Push to all” button

The process is handled by the sbc-goconf systemd service.

Note that it’s the sbc-status-checker service that reports the configuration synchronization mode to the CCM.

5.7. Initial Configuration 58

FRAFOS ABC SBC Handbook, Release 5.3

5.8 Setting Up Web Interface Access and User Accounts

ABC SBC web interface is available at the IP address of CCM (config master) interface and can be accessed using
https URL on port 443 like this: https://192.168.178.178/

For the configuration of ABC SBC please access the IP address of the CCM node. The ABC SBC GUI uses local
browser’s time to display all times and timestamps.

Further information about managing administrative users can be found in the Section User Management.

When user login attempt fails several times, the user account is locked for certain time period. For details please
check Login Parameters. To unlock the account just wait for the configured Blocking period or use following CLI
command from command line:

sbc-user-passwd -u <USERNAME>

5.8.1 Default User Accounts

The initial username and password for user with admin rights for GUI access is created on first CCM GUI login.
Then the GUI users can be managed via GUI - new users can be added or assigned to groups, as described in the
section User Management.

Group membership defines privileges of the respective users. The following groups come preconfigured:

• ABCMonitorUsers Access to ABC Monitor

• SBCadmins SBC administrators having access to all configuration

• SBCrevisor Read-only access to everything

• SBCrpc Access to XML-RPC interface. Note: using this group standalone is useless. You should use it
together with other group specifying which XML-RPC resources the user have access to.

• SBCusers access to SBC related configuration (no rights to system configuration - networking, users, fire-
wall etc.)

5.9 ABC SBC License

By default, the FRAFOS ABC SBC is installed in a demo version, which is limited to 90 seconds call duration,
does not include support for replication, high availability and extension packages. Enabling these features requires
a license file. FRAFOS issues license files according to the agreement between FRAFOS and the customer. The
license file enables features as shown in the table bellow:

5.8. Setting Up Web Interface Access and User Accounts 59

https://192.168.178.178/

FRAFOS ABC SBC Handbook, Release 5.3

Licensing Package Feature
transcoding action: “Activate Transcoding”
recording action: “Activate Audio Recording”
RTC interface: “websocket”
media server action: “refuse call with audio prompt”
high-availability background active/standby replication
monitoring_enabled gathering monitoring information for use in ABC Monitor

In the demo version without proper license set, the respective features are not executed. When the number of
maximum calls is reached, the ABC SBC returns a SIP response “503 Server overload” and, if monitoring is
enabled, issues a “limit” event with reason “licensed session limit reached”. When the maximum duration is
reached, the server terminates the call by sending BYE request to both parties, and if monitoring is enabled, issues
a “call-end” event with originator field set to “internal-disconnect”.

The license file has to be imported to the SBC using the ‘System → License’ link. Using the ‘Insert new li-
cense’ button, the administrator should give a name and selects the proper license file from the local disk by
clicking ‘Browse’ button. After applying the changes, the license file is automatically uploaded to the server and
loaded.

On Amazon Web Services, the paid-AMI instances download their license files when they start and no additional
license configuration is required.

Important: For HA or a cluster deployment, the license file has to be imported on all nodes.

5.9. ABC SBC License 60

FRAFOS ABC SBC Handbook, Release 5.3

5.10 Interface Configuration

• Physical and System Interfaces

• SBC Interfaces

• Retro Compatibility

5.10.1 Physical and System Interfaces

System (network) interfaces inside the container can be seen either using the same names as on host, or using
different name, depending on host or macvlan network mode used. If host mode is used, the interface cannot
be configured inside the container, and uses IP address as configured on host. If the macvlan mode is used, the
interface has to be configured inside the container, which can be done by adding a network interface configuration
file in /data/interfaces.d/ directory. See “man interfaces” for format details.

Several types, like simple system network interfaces (e.g. eth1), VLAN tagged interfaces (e.g. eth1.100) or
bonded interfaces (e.g. bond0) can be configured and used in the ABC SBC configuration.

SBC nodes

If ABC SBC is installed in HA (active-standby) or cluster mode, the main configuration node should know about
all the SBC nodes. This is required specifically in case the SBC interfaces settings differ between the nodes - e.g.
when the nodes differ in IP address or system interface name used for one interface of the same logical type.

By default, each node has unique node UUID created locally at the node during initial configuration, and on
configuration master side the node records are added automatically when the nodes pull configuration for the
first time. The automatic adding of node records can be disabled under “Config → Global Config → Misc →
Automatically add new nodes”.

In case it is needed to add node records manually, either because automatic adding of node records is disabled or
the records are needed to complete configuration even before the nodes try to pull configuration for first time, it can
be done on the “System → Nodes” GUI screen of the main configuration master node. For each SBC node, you
have to enter it’s node name and node UUID. The node name field is just informational, and e.g. node hostname
can be placed there. The node UUID is either generated on the nodes when performing the initial “sbc-init-config”
configuration step, or if specific node UUID is required it can be entered manually when doing the initial node
configuration. The node UUID is used to match the node to node specific settings.

The “node type” allows to specify if a node is of a specific deployment type. For typical installations, just use the
default “standard” value. The only other curently supported option is “aws” for deployment on Amazon AWS,
which is intended for using HA under AWS.

Configuring Virtual IP (VIP) Address (OPTIONAL: in HA mode only)

When deployed in an HA active/standby mode two instances of the ABC SBC nodes will share one or more Virtual
IP addresses. Virtual IP addresses are assigned to the currently active node.

The HA is configured using the “System → HA” screen.

For each pair of HA nodes a “HA group” can be created and the nodes assigned to it using “System → Nodes”,
or the HA group can be created also directly on the Nodes page while adding a new node. This HA group says
which nodes will share the HA VIP IP addresses.

It is mandatory for the nodes in HA group to have IMI interface defined, and they must not use “IP autoconfig”
option on the IMI interface, as the two nodes in HA group use the IMI interface IP address for HA “heartbeat”
between the two nodes.

Under the HA group, you can add one or more VIP - Virtual IP addresses. For the VIP enter the IP address and
optionally (recommended) also a netmask of the IP address. The netmask has to be in CIDR notation (like “24”)
or subnet mask (like 255.255.255.0). If netmask is empty, a mask “32” (meaning single host) will be used.

5.10. Interface Configuration 61

FRAFOS ABC SBC Handbook, Release 5.3

Optionally, also one or more HA routes can be added, which are bound to a particular VIP address. Such routing
rules will be brought up and down together with the VIP address. For the HA route, the following data can be
entered: Route destination - in form of subnet/netmask, like 192.168.0.0/24, this field is mandatory. Other fields
are optional: Gateway - the routing gateway IP address, Source - the source address to prefer when sending, Table
- table id if policy based routing is used.

Once the VIP address(es) are defined, it is possible to select to use VIP and choose particular VIP address when
configuring ABC SBC interfaces using “System → Interfaces” screen. The VIP address can assigned to the SBC
signaling, websocket or media type of interfaces.

Note: in case a setup is reconfigured to remove HA group and move SBC nodes to use normal IP address instead
of VIP, it may be needed to perform additional config activation for the node which was previously acting as
BACKUP in HA, as the signaling process will come up only on a node that was previously acting as MASTER in
HA setup.

5.10.2 SBC Interfaces

For signaling and management the ABC SBC uses six types of “logical” interfaces:

• IMI - Internal Management Interface - the IMI is used for inter-node communication (in HA pair or
between CCM and Sbc node) and for configuration transfer from configuration master to ABC SBC node(s).
Only one IMI can be configured. Separate system interface using IP subnet not routed or accessible from
outside should be used for IMI, unless there is a external firewall in front of ABC SBC. The port number
accessible on IMI for the config pull from configuration master is 444. It is mandatory to create the IMI
interface.

Note: There are also several services providing API on Sbc side on IMI interface, to which the CCM node connects
for getting local monitoring, webconference and logs data. The access to these API ports is limited to CCM node
src IP address by Sbc firewall. It is important that there is no NAT involved on traffic between the CCM and Sbc
nodes.

• SI - Signaling Interface - SI is used for SIP signaling. Multiple SI can be configured.

• MI - Media Interface - MI is used for media (RTP, UDPTL, ..) processing and relay. Multiple MI can be
configured.

• WS - Websocket Signaling - WS is used for SIP signaling over Websockets. This is useful only if the ABC
SBC is configured to act as RTC gateway as described in Section SIP-WebRTC Gateway.

• CI - Custom Interface - CI is used for different applications which can be used for specific purposes like
SSH, SNMP, Prometheus pull service, TURN, HTTP proxy and HTTP redirect.

Signaling and media interfaces can be configured in different combinations. All SI/MI can share the same system
interface, can be configured on a “per Call Agent” basis where each Realm has its signaling and media interface,
or can share one assigned IP address with different ports per SBC interface.

It is also possible to create separate signaling and media interfaces on the same system interface for different
purposes. For example, one for a PSTN gateway and one for receiving calls from residential users. In this case,
a different signaling port and media port range shall be used. A typical ABC SBC configuration is to have one
separate IMI and one shared signaling and media IP address for each Realm.

When doing the initial ABC SBC configuration, add IMI interface. The IMI interface has to be defined always if
HA or cluster mode is used (otherwise needed firewall rules would not be set).

Then add the interfaces for the SBC application: signaling (SI) and media (MI), optionally websockets signaling
(WS).

If a specific application is needed, custom interface (CI) can be used with any port requested by admin.

When adding logical SBC interface, you first define it’s name and options that are common to all SBC nodes
using this interface, then you add records under the logical interface which map it to system interface for node(s)
that will be using this logical interface. The list of records that map logical SBC interface to system interface on
node(s) can be expanded or collapsed using the “+” or “-” icon before interface name. New mapping of logical

5.10. Interface Configuration 62

FRAFOS ABC SBC Handbook, Release 5.3

SBC interface to system interface can be added using the “insert new system interface” button located at left hand
side of the list.

In HA or cluster mode, if the interfaces differ between the nodes (use different IP address or system interface
name), you have to create more separate logical to system interface mapping entries under the logical interface.
Create a separate entry for each SBC node, set owner type to Node and select the node under Owner. Note: if
records both for all nodes under a config group (owner type of config group selected) and for specific nodes are
created, each node will use the record for all only if specific record for that particular node does not exist.

If the SBC interface settings do not differ between nodes, you can create just one logical to system interface
mapping entry under each logical interface, set Owner type to config group and use the “default” config group.

If SBC interface is going to use VIP address (shared IP), the VIP address should be added before adding the
interface.

SBC Interfaces are configured in the “System → Interfaces” screen.

The following parameters can be defined for logical SBC interface:

• Interface name: a unique identifier of the logical interface - [a-z, A-Z, 0-9].

• Interface type: Signaling, Media, WebSocket Signaling, External management, Internal management, Cus-
tom.

• Interface description: description (alias) for the interface that is used in the GUI configuration.

• TLS profile. By default, the TLS profile is set to None, meaning no TLS will be used on the interface. If
TLS is to be used, select the TLS profile to use on the interface. The TLS profiles can be edited under
System / TLS profiles page. There is profile named “default” which is automatically created at ABC SBC
installation and uses self-signed certificate.

• Applications (Apps): each logical interface can have one or more “Apps” enabled, which tune what service
on which port will be listening on that interface, plus allow setting more specific option.

Please refer to - Reference Application Interface Options section for the Apps options details.

After creating entry for the logical SBC interface, add at least one logical to system interface mapping under it.
The following parameters can be set for the mapping:

• Owner and Owner type: These list-boxes options set to which specific node the mapping of SBC logical
interface applies. It can be assigned to a particular node as been pre-configured under “System → Nodes”,
or all nodes belonging to a particular config group (“default” by default). Note: currently SBC supports
only one common config group named “default”, which can be used if the mapping applies to all nodes.

• System interface: system interface name (eth1, eth1.123 - VLAN tagged, bond1 - bonded interface)

• Type of IP address: use “manual” to manually specify the IP address, which is the default. If “autoconfig”
is used, the first IP address from the corresponding system interface will be taken automatically. Use “VIP”
to select one of VIP addresses, which can be configured in case of HA deployment mode under “System →
HA” screen. Note: when configuring IMI interface of a node belonging to a HA group, the IP address type
has to be set to manual.

• IP address: you can specify the IP address of the interface.

• Type of public IP address: use “manual” to manually enter the public IP address in the following field,
which is the default. Use “Amazon autoconfig” to autodetected the public IP address. Current options of
autodetection include Amazon EC2 cluster method.

• Public IP address: this parameter is optional. It allows to configure an IP address that will be used instead of
the real or virtual IP address in SIP signaling (in case of the signaling interface) or media description (SDP;
in case of a media interface). This is very useful to support near end NATs, e.g. Amazon EC2. Please refer
to Sec. Physical, System and SBC Interfaces more details on the topic.

• TLS profile. If any value is set there, it override the TLS profile value set for the logical SBC interface.
Otherwise TLS profile set on logical SBC interface is used.

5.10. Interface Configuration 63

FRAFOS ABC SBC Handbook, Release 5.3

The fields: System interface, IP address, Public IP address and TLS profile supports cluster config parameters
(values in format “%param_name%”) so even single logical to system interface mapping record may result into
different IP address or system interface used on different nodes.

Important: When the SBC interfaces are configured, a warning message with a button to activate the new SBC
configuration is shown in the GUI. No SBC interface changes are applied until the “activate” button is used. When
the configuration changes are applied, all services using network configuration are restarted (e.g. SIP and RTP
processes, SNMP daemon etc..). Note that this may cause service disruption.

5.10.3 Retro Compatibility

Retro compatibility was introduced with the ABC SBC 4.5 because of increment of the JSON config version
from 1.0 to 1.1. The major change was the addition of interface applications, allowing a better transparency and
tweaking of what is running where.

As the change brings some inconsistencies between the two config versions, a retro-compatibility module was
developed. The purpose of that module is to, for every new config version to be deployed, check the current config
(version 1.1) against the target node release, and when needed convert the JSON config to the older format.

While some basic changes are made under the hood (converting application interface options to older global config
options - sshd port value for example), more complex changes are reported as an error.

The following table maps possible error situations with suggested solutions.

Common issues and fixes

Error message Cause Fix

json retro-compatibility 1.1 to 1.0:
[APP NAME] app not sup-
ported on older setup

The application is enabled on
an interface assigned to an node
which does not support it (< ABC
SBC 4.5)

See the list of unsupported appli-
cations in the section Applications.
Disable the problematic applica-
tion.

json retro-compatibility 1.1 to 1.0:
custom interface isn’t retro
compatible

Custom interface is a new type of
logical interface which was intro-
duced in ABC SBC 4.5. This inter-
face is not backward compatible.

Unlink the custom interface from
the node or node’s config group.

json retro-compatibility 1.1 to 1.0:
different value provided
for the [PARAM] (app
[APP_NAME]) Imported
values: [VALUES]

Different values assigned for op-
tions on a pre 4.5 node.
Example: sshd port 22 on IMI, 23
on XMI

Use the same value for every appli-
cation assigned to the faulty node.
Example: set 23 for both IMI and
XMI

5.10. Interface Configuration 64

FRAFOS ABC SBC Handbook, Release 5.3

Applications

Name from error Description Interface GUI name
pkapman Service which generates and servers pcap files on

SBC
Available since: 4.3

Internal
management
interface
(IMI)

PCAP query
service

goministrator Perform administrator actions on a host. Please
note this does not affect xmloredis service in pre
4.5 releases
Available since: 4.5

Internal
management
interface
(IMI)

Management
for host

webconf-api Expose sems’s webconf mgmt via RESTful json
API
Available since: 4.6

Internal
management
interface
(IMI)

Local webconf
API

goplog Provides access to logs on SBC node
Available since: 5.0

Internal
management
interface
(IMI)

Access to log
files

turn Enable COTURN
Available only on 4.5 to 5.1.

Custom
interface

TURN server
for websocket

http_proxy Allow custom nginx proxy
Available since: 4.6

Custom
interface

HTTP proxy

http_redirect Allow custom nginx redirect
Available since: 4.6

Custom
interface

HTTP redirect

conference_gui Simple Web GUI for Meet-me conference
Available since: 5.1

Custom
interface

Simple Web
GUI for
Meet-me
conference

SBC 5.0 introduces possibility to hide GUI options which are not present / compatible with the selected version.
This can be found in CCM –> CCM Config –> Misc. The default value is “None” which means everything is
visible.

Fig. 1: Retro compatibility mode selection

5.10. Interface Configuration 65

FRAFOS ABC SBC Handbook, Release 5.3

5.11 TLS profiles Configuration

The TLS profiles screen is used for manage TLS profiles used by SBC interfaces (see section Physical and System
Interfaces). Each SBC interface can be configured to use different TLS profile.

The TLS profile takes effect only on those “Apps” enabled on the corresponding SBC interface, which support
using of TLS.

5.11.1 TLS profile options

Table 1: TLS profile options
SSL certificate file Select a file containing SSL certificate in PEM format
SSL private key file Select a file containing key for SSL certificate in PEM format
Trusted CA certificates file Select a file containing of trusted CAs in PEM format
Verify peer certificate If checked, the SBC verifies TLS certificate of the peer against the trusted CA

file.
Verify peer hostname/ip If checked, the SBC verifies whether hostname / IP address of the peer match th

one mentioned in the peer certificate.
As of now, this check works for signalling application only.

Allow wildcard certificate If checked, the SBC accept wildcard certificates.
Warning: this option shall not be used in most cases. You enable it on your own
risk.
This option takes effect for signalling application only.

Enable Let’s Encrypt If checked, no certificate, private key nor CA certificates are required. The ABC
SBC will handle by himslef the completion of either an ACME HTTP01 or a
DNS01 challenge against Let’s Encrypt certificate authority.
Refer to Let’s encrypt gocertbot for more information about the requirements.

DNS DNS domain associated to the node. The DNS is used to complete the ACME
challenge on the let’s encrypt side.
Require if Enable Let’s Encrypt is checked.

Challenge Type Type of Let’s Encrypt certificate authority challenge. Possible values are http01
or dns01. Refer to the official home page or Let’s encrypt gocertbot for more
information.
Require if Enable Let’s Encrypt is checked.

DNS Provider DNS provider furnishing the node’s DNS.
Require if dns01 is selected.

Challenge Options Set of settings specific to the selected DNS provider. Refer to the supported
provider list for more information.
Example: the following was used to test against namecheap’s sand-
box platforme: { “NAMECHEAP_PROPAGATION_TIMEOUT”:”600”,
“NAMECHEAP_API_USER”:”QQQ”, “NAMECHEAP_API_KEY”:”XXX”,
“NAMECHEAP_SANDBOX”:”true” }
Require if dns01 is selected.

5.11.2 Certificate requirements

For the TLS certificates to be used with ABC SBC, the following requirements have to be met:

• The IP address or hostname for which the certificate is issued needs to to be listed in it’s SAN (Subject
Alternative Name) field.

If IP address is used for access to CCM, the SAN field format should be like “IP:1.2.3.4”, or if DNS name is used
then “DNS:test.example.com”.

• The “serverAuth” should not be set in “extendedKeyUsage” field of the certificate for SBC node (client)
side.

5.11. TLS profiles Configuration 66

https://letsencrypt.org/docs/challenge-types/
https://go-acme.github.io/lego/dns/#dns-providers

FRAFOS ABC SBC Handbook, Release 5.3

• If the certificate is not of a “wildcard” type and was issued only for one IP address, it has to be carefully
considered to which Sbc node or group the TLS profile is assigned under Interfaces. It can be e.g. used for
two Sbc nodes that are used as HA pair and the IP address is used as VIP address.

Note that if using the Let’s encrypt certificates together with http challenge, each certificate issued by LE is for a
single unique IP address (aka a single node’ interface).

5.11.3 Let’s encrypt gocertbot

If the “Enable Let’s Encrypt” option is selected, a set of TLS certificate, private key and CA bundle will be
automatically acquired and renewed against Let’s Encrypt certificate authority challenges services.

Renewal

The certificate renewal will be attempted automatically 15 days before it’s expiration. On certificate obtention
or renewal, a notification email is sent to the administrator, using the email address set under ‘Global Config >
System Monitoring’ and a new configuration has to be activated from the ABC SBC Cluster Config Manager.

Settings example

We start by creating a dedicated TLS profile. Depending on the challenge type, we end with a configuration similar
to one of those two :

Fig. 2: Profile using the http01 challenge

5.11. TLS profiles Configuration 67

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 3: Profile using the dns01 challenge

Once the profile created, depending on the challenge type (refer to Limitations for more), we assign it to one or
more node/config groups interfaces. For the Let’s Encrypt certificate authority challenge to be attempted, we then
trigger a new configuration deployement from the ABC SBC Cluster Config Manager.

Fig. 4: Triggering the publish of a new configuration from the ABC SBC Cluster Config Manager

5.11. TLS profiles Configuration 68

FRAFOS ABC SBC Handbook, Release 5.3

Process

Once the Let’s Encrypt certificate authority requirements deployed to the requested nodes, the ABC SBC Cluster
Config Manager gocertbot will attempt to complete the challenges.

1) gocertbot ask Let’s Encrypt certificate authority to complete the selected challenge for the given DNS

2) Let’s Encrypt certificate authority asnwer with a set of secret token to present to complete the challenge

The following occure depending on the challenge type:

http01

3) gocertbot forward the challenge’s token to the target node’s xmoredis (port :4242)

4) xmloredis dump the token to the node filesystem (/var/www/lets_encrypt/{TOKEN})

5) xmloredis start an nginx instance to serve the token trough the HTTP protocol

6) xmloredis allow the port 80 trough the SBCTEMP iptable rules

7) xmloredis give the green light to gocertbot, whom will forward it to Let’s Encrypt certificate authority

8) Let’s Encrypt certificate authority attempt the challenge by accessing http://DNS/.well-known/acme-
challenge/{TOKEN}

dns01

3) gocertbot create a TXT record derived from that token and our account key

4) gocertbot request the DNS provider to put that record at _acme-challenge.<DNS>

5) gocertbot give the green light to Let’s Encrypt certificate authority

6) Let’s Encrypt certificate authority attempt the challenge by accessing https://_acne-challenge.<DNS>

Success

On success, a set of TLS certificate, private key and CA bundle certificate are delivered to the gocertbot process.
Those values are persisted in database, which triggering a new “dirty” state warning.

To complete the process, we need once again to publish the new configuration from the ABC SBC Cluster Config
Manager, which provoke a dump of the new certificates into the /data/sbc/tls/ directory of the target nodes.

If doable (refer to Limitations for more), sems process hot reload the ssl certificate so active calls aren’t interrupted.

Failure

In case of failure, a mail is sent to the configured mail address. Logs are accessible either via syslog, or in
/var/log/frafos/sbc.log. Note that errors are also reported per certificate in /var/log/frafos/certbot/[profile name]
and monitored by the sbc-status-check service.

5.11. TLS profiles Configuration 69

FRAFOS ABC SBC Handbook, Release 5.3

Requirement

The profile’s “DNS” field has to be set to a DNS name resolving to the public IP address of the ABC SBC target
node where the corresponding TLS profile is to used. The challenge to verify ownership will be done automatically
against it.

A valid email address need to be registered so it will be used to create an Let’s Encrypt certificate authority
account and receive email alerts (GlobalConfig > System Monitoring > email address). It’s better for the from
email address field to be set. Refer to System Monitoring Parameters for more.

Renewal

The certificate renewal will be attempted automatically 15 days before it’s expiration. After certificate creation
or renewal, a notification email will be sent to administrator email address set under Global config / System
monitoring and new config has to be activated from ABC SBC GUI to propagate the new certificate to SBC nodes.

Limitations

• http01 challenge profile cannot be assign to more than a single node system interface

• http01 challenge doesn’t allow wildcard certificate

• dns01 challenge allow wildcard certificate, but the DNS provider must be supported (_provider list)

• sems isn’t able to hot reload WS interface certificate - as so, in case of certificate renewal, the whole process
is restarted

Debug

Table 2: Debug options
process good for logs
xmloredis up nginx instance, present LE token systemctl status sbc-xmloredis You can also set “dev”:

true in /etc/frafos/sbc-xmloredis.conf
gocertbot request LE’s for the challenge filter

and persit the cert database
logs are outputed to the USER syslog facility, in
/var/log/frafos/sbc.log

You may manually invoke the certbot, from within a ABC SBC Cluster Config Manager’ shell by running the
following:

% sbc-gocertbot -d

In case of testing, to avoid reaching LE’ 168h rate limit, please remember to enable the “Query Let’s encrypt
staging environment” ABC SBC Cluster Config Manager’ config options.

5.12 Hardware Specific Configurations

Depending on the hardware used for the ABC SBC deployment, there may be some fine-tuning needed to get
maximum performance.

5.12. Hardware Specific Configurations 70

FRAFOS ABC SBC Handbook, Release 5.3

5.12.1 Network adapters

If the SBC is configured to work as an RTP media relay and a high number of concurrent calls is expected, a good
choice of hardware is critical, specifically in terms of the used network adapter. RTP media traffic means high
packet rate, with many small packets passing through. Some network adapters have suboptimal throughput under
such conditions. Important things to consider when choosing a network adapter are:

• More receive and transmit packet queues are better. Each queue should be using separate interrupt.

• The adapter method of distributing packets to individual queues should include not only IP addresses into
the “hash” calculation algorithm, but should include also IP packet port numbers. (Otherwise the traffic
may end up in just one or two queues in case the SBC is communicating with only a small number of other
devices on even just one IP address.)

• The adapter should be able to buffer packets received and issue interrupts only after some amount of the
packets were received or some timeout. This can be usually configured using “coalesce” adapter options.

There is a global config section “Lowlevel” prepared to allow fine-tuning of settings related to network adapters.
The settings are applied after the server is rebooted. The reference of the low-level configuration parameters can
be found in Section Low-level Parameters.

System administrator can edit the settings depending on the particular hardware used. The settings are:

• Network interfaces on which a “receive packet steering” kernel feature should be enabled. Recommended
setting is to enable it on network interfaces used as media interface.

• Ethernet adapter coalescing options and rx/tx ring parameters. These affect how many packets the adapter
may buffer before issuing an interrupt. There is no recommended setting, as the values highly depend on
the ethernet adapter used.

• Network interfaces on which the individual interrupts for receive and transmit queues should be statically
bound to individual CPUs. If running on multi-CPU or multi-core platform, the recommended setting is to
enable this option for all network interfaces used as media interface.

• Options to unload kernel modules for connection tracking or to disable connection tracking completely.
Recommended setting is to stop connection tracking. However firewall rules used on the SBC have to be
considered as those may need connection tracking active. Note: the default firewall rules that come with the
SBC do not use connection tracking.

• Option to enable or disable automatic run of “mysqlcheck” command at end of server boot process. This
command checks and repairs (if needed) MariaDB ABC SBC database tables. Default and recommended
setting is to enable it.

5.12.2 Configuration of SBC Number of Threads

The major processes of the ABC SBC are running under the name of sems. The number of SBC “sems” process
threads affects the overall performance in terms of the maximum number of concurrent calls or maximum rate
of calls per second supported by the ABC SBC. The optimal settings depend quite a lot on the number of CPU
cores of the server used and also on the type of traffic being processed. As a general rule, for high number of
concurrent calls including RTP media with relatively low calls per second rate lower numbers of threads performs
better, while for high rates of calls per second with SIP only and no RTP media higher number of threads performs
better.

The default value for the number of threads is 16. The recommended settings are:

• for SIP+RTP traffic use a number of threads equal to the number of CPU cores multiplied by 4

• for SIP only traffic (no media) use a number of threads equal to the number of CPU cores multiplied by 16

The number of threads can be configured under “Config → Global Config → Lowlevel”.

5.12. Hardware Specific Configurations 71

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 5: Configuration of SEMS threads

5.12.3 Configuration of sysctl settings

Tuning of some kernel sysctl settings can be considered too, for better performance. These settings need to be
applied on the host where the container is running, as usually inside the container the values cannot be increased
above the host side settings.

The kernel sysctl settings are typically configured by editing “/etc/sysctl.conf” file or by providing custom config
file in “/etc/sysctl.d/” directory on the host system, and activating by running “sysctl -p”, depending on the OS
used there.

It is recommended to increase the socket receive and send buffer sizes, by setting these sysctl options:

net.core.rmem_max = 26214400
net.core.wmem_max = 26214400

If ABC SBC uses firewall and connection tracking is used, for high traffic case it is recommended to increase the
maximum number of connection tracking entries:

net.nf_conntrack_max = 1000000

5.13 Last ABC SBC Installation Steps

Note: IMPORTANT: AFTER THE INSTALLATION PROCESS IS COMPLETE AND BEFORE CONFIGU-
RATION AND TESTING BEGINS WE URGE YOU TO WHITELIST THE IP ADDRESS FROM WHICH THE
ABC SBC WILL BE ADMINISTERED.

Failure to whitelist the administrator’s IP address may – especially during the initial configuration and testing –
easily block the administrative access to the machine. Various automated blacklisting techniques can block the
whole IP address if they spot unexpected traffic from the IP address. See more details in Section Automatic IP
Address Blocking.

To whitelist the IP address, visit the administrative GUI under “Config → Firewall → Exceptions to automatic
Blacklists → Add” as shown in the Figure bellow:

5.13. Last ABC SBC Installation Steps 72

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 6: Warning: Whitelist Administrator’s IP Address

5.14 ABC Monitor Installation (optional)

In this section we describe the installation process of the ABC Monitor.

The ABC Monitor is optional monitoring application, and if used, it has to be installed as a separate container.
Running the server off the cloud is possible. If you would like to start the ABC Monitor off Amazon Cloud, skip
this section and proceed to ABC Monitor Installation Off AWS (optional).

In case of problems please contact the FRAFOS support at support@frafos.com

5.14.1 ABC Monitor recommended server configuration

Minimum server configuration for ABC Monitor is:

• 1 x CPU with 4 cores

• 8GB memory

• 256GB disk

• 1 x 1Gb NIC interface

Recommended server configuration:

• 2 x CPU with 4 cores

• 32 GB memory

• 1TB SAS SATA SSD

• 2 x 1Gb NIC interface

Recommended file system to use: ext4. Note that depending on use case, if traffic logs and audio recordings are
being synced from Sbc(s) to the Monitor and the retention policy is configured to keep them for long time, there
may be many small files stored on the Monitor filesystem. In that case, it is recommended to tune the blocks /
inodes ratio when formatting the filesystem, to allow storing of higher number of files then the default ext4 values
allow.

5.14. ABC Monitor Installation (optional) 73

mailto:support@frafos.com

FRAFOS ABC SBC Handbook, Release 5.3

5.15 ABC Monitor Container Installation

The ABC Monitor can be installed as a container, running on top of operating system of customer choice, if the OS
supports running of systemd type of containers. The recommended and tested host OS is Debian 12 (Bookworm).

The installation steps are similar like when installing ABC SBC container version, please refer to Installation
Procedure section for details. The important difference is that default SSH port of ABC Monitor container is set
to 28.

Note: it is also recommended to use separate host server directory for the “/data” container path holding persistent
data. It will allow smooth container replacement with newer version, without need to do backup / restore.

5.15.1 ABC Monitor Initial Configuration

The ABC Monitor GUI can be accessed using web browser at https://<ABC Monitor IP addr>:445/.

Note that the ABC Monitor gui https access uses non-standard port 445 by default, to prevent possible port conflict
if the container is running on host together with CCM container (which uses port 443 for gui access). The port
can be tuned in ABC Monitor settings.

The ABC Monitor GUI now authenticate user using CCM. On first login, it asks for hostname of CCM. It shall
be possible to resolve this hostname by the ABC Monitor and also by browser of the user accessing the GUI. To
make single-sign-on and logout working reliably, both CCM and ABC Monitor shall be accessed via a FQDN in
a single domain (e.g. ccm.example.com and monitor.example.com).

To make the authentication working, you have to also configure a pair of RSA keys on the CCM GUI. See the
Login.

For initial ABC Monitor configuration, access the GUI via https, port 445 by default, and set some basic settings
under the Settings / General page.

PLEASE SET at least memory options for elasticsearch and logstash processes, to correspond to total available
system memory.

• Enable receiving events only via encrypted input: by default, ABC Monitor accepts events and replicated
files (pcaps, recordings) coming both via normal unencrypted channel (which is default and has better per-
formance) or encrypted using TLS. The way events are sent either non-encrypted or encrypted is configured
on ABC SBC side. If this option is enabled, the ABC Monitor will accept only events coming via the TLS
encrypted channel.

• Peer certificate verification level, if TLS used: if the events are being sent to ABC Monitor encrypted using
TLS, this option sets the level of verification of the ABC SBC side certificate. Possible values are: 0 - ignore
peer certificate, 1 - verify peer certificate if present, 2 - verify peer certificate, 3 - verify peer with locally
installed certificate, 4 - ignore CA chain and only verify peer certificate. Default value is 0.

• Monitor GUI https port: sets the https port on which ABC Monitor GUI is accessible. Default value is 445.

• Number of days to keep old events before deleting them: this sets the time period, for how long ABC Mon-
itor will keep the monitoring data collected from ABC SBC nodes. The data is stored in /data/elasticsearch
directory. Default setting is 30 days. Amount of disk space used highly depends on the monitored nodes
traffic. This setting is used also to delete old log files.

• Minimum partition free space percentage before deleting old events: if the free space on the partition where
events are stored (that is partition holding /data/elasticsearch directory) drops below the value set, oldest
events will be automatically deleted until the free space percentage is again above limit. Default value
is 20. Set to 0 to disable the automatic deletion based on free space. Note: it is highly recommended
to use separate partition for the /data/elasticsearch directory, otherwise old events may be deleted even if
something else occupied the disk space. On SSD disks it is recommended to keep about 20% of free disk
space for better performance and longer disk life.

• Time in minutes to keep old traffic pcap files before deleting them: this sets retention period for traffic pcap
files that are synced from ABC SBC nodes to ABC Monitor, if it is enabled in ABC SBC global config. The
setting must be greater or equal than the retention setting on SBC. (“Global Config → Events → Number

5.15. ABC Monitor Container Installation 74

https:/

FRAFOS ABC SBC Handbook, Release 5.3

of days to keep old traffic log files”), failure to dimension the period correctly may cause ABC SBC to
keep uploading the files repeatedly. The data is stored in /data directory.

• Time in minutes to keep old recordings files before deleting them: similar setting like the previous one, but
for recordings file, if replicating enabled in ABC SBC global config. The setting should be also equal to
corresponding setting on ABC SBC. The data is stored in /data directory.

• Firewall: source IP addresses or subnets allowed to access Monitor GUI over https: limits access to ABC
Monitor GUI using system iptables rules only from specified list of IP addresses, IP subnets or hostnames.
You can specify more items separated by spaces. For IP subnets, use the CIDR notation like 192.168.0.0/24.
It is highly recommended to limit access only from particular addresses or network subnets, to minimize
security risks.

• Firewall: source IP addresses or subnets allowed to access Monitor over ssh: similar to the previous setting,
but limiting access to ssh daemon.

• Firewall: source IP addresses or subnets allowed to push events to Monitor: limits access to pushing events
from ABC SBC to ABC Monitor only from specified list of IP addresses or subnets. More items can
be separated by spaces. It is highly recommended to limit access to ABC Monitor only from particular
addresses, to minimize security risks.

• Monitor name: sets ABC Monitor name that will be displayed in GUI dashboards heading.

• E-mail TO for alerts: sets recipient e-mail address for sending alerts. Use empty value to disable sending of
alerts.

• E-mail FROM for alerts: sets e-mail From address to be used when sending e-mail alerts.

• E-mail address for reports: sets recipient e-mail address for sending reports. (Note: the reports are not
existing yet in ABC Monitor 4.3 and 4.4 releases, this option is prepared for later releases.)

• SMTP server address for sending emails: sets the SMTP server address that will be used as e-mail relay. If
empty, defaults to “localhost”. Important: there is no SMTP server running on Monitor container, it has to
be provided by customer.

• SMTP server port: sets the SMTP server port. Default value is 25.

• SMTP server - use TLS: if enabled, TLS will be used on the connection to the SMTP server. Default is
disabled.

• SMTP server authentication method: specifies the authentication method used for connection to the SMTP
server. Default value empty means no authentication. You can use values like “plain”, “login”.

• SMTP server authentication username: if SMTP authentication is used, this option specifies the authentica-
tion username.

• SMTP server authentication password: if SMTP authentication is used, this option specifies the authentica-
tion password.

• Logstash heap memory size percentage: sets the amount of memory to use as heap for the Logstash process,
which is the ABC Monitor part receiving and filtering events, as percentage from total system memory. It
is recommended to use 20% of system memory. Use value without the “%” suffix.

• Elasticsearch heap memory size percentage: sets the amount of memory to use as heap for the Elasticsearch
process, which is the ABC Monitor database part storing events. It is recommended to use 40% of system
memory. Use value without the “%” suffix.

• Logstash persistent disk queue size: sets the size of disk queue used as buffer for events. It is recommended
to use at least 1GB of disk space. Use “mb” or “gb” suffix to specify value in megabytes or gigabytes.

The ABC Monitor GUI (as well as CCM GUI) supports two user databases: the CCM local user database and
LDAP dictionary. Both are independent and may be enabled at the same time. In such case, the CCM local user
database is tried first.

User passwords could be changed using CCM GUI or on the LDAP host.

On the ABC SBC side, to enable pushing of monitoring data to the ABC Monitor, you have to configure the ABC
Monitor IP address in “ABC Monitor address” setting of Global Config, under Events tab.

5.15. ABC Monitor Container Installation 75

FRAFOS ABC SBC Handbook, Release 5.3

By default, the pcap and traffic recordings files are copied from ABC SBC nodes to ABC Monitor using basic
rsync protocol, which works without any extra configuration. If needed, rsync over TLS can be used if enabled in
Global config on ABC SBC side.

The https access to ABC Monitor GUI uses automatically created self-signed certificate by default. If real trusted
certificate is going to be used, it can be imported using the gui Settings.

5.16 ABC Monitor LDAP Installation (optional)

If the LDAP authentication is going to be used, the following options can be set in ABC Monitor GUI Settings /
General page. Alternatively, in case the ABC Monitor GUI is not accessible yet, the same options can be set from
command line using “abc-monitor-ldapconfig” command.

• Enable LDAP authentication: if enabled, the authentication against LDAP server will be done.

• LDAP server address: the LDAP server address, use a format like “ldap(s)://IP:PORT”, “ldap(s)://IP” or
“ldap(s)://my.domain”.

• LDAP bind distinguished name: LDAP admin bind domain name.

• LDAP bind credential: admin password to authenticate against the LDAP server.

• Base DN of the LDAP server users: specifies the default base domain name. For
“cn=admin,dc=example,dc=org” the base DN would be “dc=example,dc=org”.

• LDAP extra groups: extra group to concatenate to the base dn to authenticate a user. We would set
‘ou=People’ to authenticate user with dn in the form “uid=john,ou=People,dc=example,dc=org”

• LDAP’s group users need to belong to: a potential LDAP group, from whom a user wishing to log itself need
to belong to. Please not that a full dn is expected, in the form “cn=GUI,ou=Groups,dc=example,dc=org”.

• enable compatibility with Microsoft Active Directory

• Verify certificate of LDAP server:

• Trusted CA certificates file: Select a file containing list of certificates to which the client’s one are check
(must be in PEM format).

A testing docker instance may be found at https://github.com/frafos/docker-ldap. Use with the following options
value :

• enable ldap: true

• ldap host: ldaps://127.0.0.1:389

• bind dn: cn=admin,dc=example,dc=org

• bind password: admin

• search dn: dc=example,dc=org

• extra groups: ou=People

• user groups: cn=GUI,ou=Groups,dc=example,dc=org

• ldap win: false

• verify peer: true

• ca_certificate: /data/tls/ca_cert.pem

5.16. ABC Monitor LDAP Installation (optional) 76

https://github.com/frafos/docker-ldap

FRAFOS ABC SBC Handbook, Release 5.3

5.17 ABC Monitor Installation Off AWS (optional)

Starting the ABC Monitor off the AWS cloud is very fast, because ready-made virtual images already contain an
installed ready-to-run system. An AWS-powered ABC Monitor can be used for trials, as a secondary Monitor
when two are needed, or even as a primary system for both AWS and on-premises SBCs.

Before you start you will need the following:

• Amazon Web Services (AWS) account. Note that the accounts come with several service plans charged at
different levels, and credit card number and a telephone must be ready to verify identity and payment. Go
to http://aws.amazon.com to sign up.

• AWS Elastic Cluster SSH keypair. This is important to be able to administer the virtual machines remotely.
If you haven’t created or uploaded one, do so under “EC2→Keypairs”. If you want to start the services in
multiple regions, make sure that you have a keypair for every region before you start.

• SBCs with enabled monitoring license to provide the actual monitoring data.

To start a monitoring instance proceed as follows: - Start the instance.

• Visit https://monitor.frafos.com to start a proper AMI.

• Choose a properly dimensioned instance type with at least 8 GB of memory, such as M4.LARGE.

• Apply a proper security policy. Make sure you limit monitoring traffic to that coming from your SBCs and
permit only port numbers 1873 and 16379. Administrator machines shall be allowed to access remote shell
(port 22) and the actual monitoring GUI (port 445).

Fig. 7: An example Security Group for ABC Monitor Running on AWS

• Configure the ABC SBC to use the ABC Monitor instance as primary or secondary monitor.

– open ABC SBC Administrative interface, the section “Config → Global Config → Events”

– set “ABC Monitor Address” or “Secondary ABC Monitor Address” to the IP address of the ABC
Monitor instance. If on the same net, use the private IP address, use the public IP address otherwise.

– optional: turn on the checkbox “replicate traffic logs to ABC monitor” or “replicate traffic logs to
secondary ABC Monitor”.

– optional: turn on the checkbox “replicate recordings to ABC monitor” or “replicate recordings to
secondary ABC Monitor”.

5.17. ABC Monitor Installation Off AWS (optional) 77

http://aws.amazon.com
https://monitor.frafos.com

FRAFOS ABC SBC Handbook, Release 5.3

– turn on “Use TLS secure connection to ABC Monitor” and set “Verify level for TLS connection to
ABC Monitor:” to zero

– apply the changes

– activate the changes

• Access the ABC Monitor: visit https://IP, use “sbcadmin” as username, instance-id as password

5.17. ABC Monitor Installation Off AWS (optional) 78

https://IP

Chapter 6

General ABC Configuration Guide

6.1 Physical, System and SBC Interfaces

In the ABC SBC we distinguish between physical, system and SBC interfaces, see the Figure ABC SBC Interface
definition:

• A physical interface is one of the network interfaces (cards) physically available on the system.

• System interfaces is an interface mapped on one or more of the physical interfaces. A system interface can
be a “simple” physical interface (e.g. “eth2”), a VLAN (e.g. “eth3.1”) or a bonded interface that is bound
to two physical interfaces (e.g. “bond0” created by bonding “eth0” and “eth1” physical interface).

For active/hot standby high-availability mode, it is highly recommended to use bonded interfaces with each
physical interface connected to separate L2 switch to ensure reliable physical connections.

• SBC interfaces: These are logical interfaces used by the ABC SBC in order to distinguish between manage-
ment, signaling and media traffic.

79

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 1: ABC SBC Interface definition

For the details on the configuring the interfaces see Section Interface Configuration.

6.2 Defining Rules

The ABC SBC’s behavior is specified in form of rules, as explained in Section A-B-C rules. These rules consists
of conditions and actions and are processed sequentially until a matching rule is found.

Each rule may have none, zero or multiple conditions. If no condition is specified, the rule always matches and
all its actions are executed. If multiple conditions are associated with a rule, the rule matches only if all of the
individual conditions match.

An example of such a rule is shown in the Figure Example Rule. It consists of two conditions that match if a call
is intended for a telephone number beginning with 900 and the caller is not registered. If the condition applies,
the call is rejected using the 403 SIP code.

Fig. 2: Example Rule

6.2. Defining Rules 80

FRAFOS ABC SBC Handbook, Release 5.3

Each individual rule condition consists of three parts: a condition type, an operator and a value. Subsequent
subsections describe all these parts in details.

6.2.1 Condition Types

The type of a condition defines the left operand for the operation. The following table describes all available
condition types and operators types that are applicable to the respective condition types. Operators “==”, “!=”,
“RegExp”, “does not match RegExp”,”begins with”, “does not begin with”, are supported unless specified other-
wise.

Table 1: Condition Types
Condition type Description
Source Call Agent Check the source call agent. Only operators == and != are supported.
Source Realm Check the source realm. Only operators == and != are supported.
Source IP Check IP address the incoming request was sent from.
Source port Check port number the incoming request was sent from.
Inbound interface Check local interface the incoming request was received on. Value has to

be chosen from a list of configured signaling interfaces. Only operators
== and != are supported.

Source-IP CC (GeoIP) Check country code against source IP’s geographic region. Note: the
geoip database must exist, which needs providing geoip license created
using customer account at MaxMind, via global config option under Con-
fig / Global Config / Misc tab.

Destination Call Agent Check the destination call agent. Only operators == and != are supported
and only available in realm C rules.

R-URI Check current request URI.
R-URI User Check user part of request URI
R-URI User Parameter Check parameter in username part of request URI. For example in the R-

URI “sip:106;name=franta@domain.com”, the parameter “name” can be
checked for value “franta”

R-URI Domain Check host part of request URI, can contain port number
R-URI URI Parameter Check parameter of request URI.
From Check From header field value.
From URI Check value of From URI.
From User Check user part of From URI.
From Domain Check host part of From header URI, can contain port number
To Check To header field value.
To URI Check value of To URI.
To User Check user part of To URI.
To Domain Check host part of To header URI, can contain port number.
Supported header Check content of Supported header (since version 4.5)
Require header Check content of Require header (since version 4.5)
Header Check value of given SIP header or test if a SIP header does not exist. This

condition is a kind of “escape-code” for testing headers for which no other
conditions exist. The following header-fields will not be processed using
this condition: From, To, Call-ID, CSeq, RAck, RSeq, Route, Contact,
Via, Max-Forwards, Record-Route, Content-Type, Content-Length

Codecs Check presence/absence of codecs within SDP. Right operand specifies
codec name. Only operators Contain , Contain RegExp and Do not contain
are supported.

Media Types Check presence/absence of media type within SDP. Right operand speci-
fies media type name (e.g., audio,video)
Only operators Contain, Contain RegExp and Do not contain are sup-
ported.

continues on next page

6.2. Defining Rules 81

sip:106;name=franta@domain.com

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Condition type Description
SRTP Types Check presence/absence of SRTP type within SDP. Right operand speci-

fies media type name (e.g. DTLS, SDES, none)
Only operators Contain, and Do not contain are supported.

Call Variable Check call variable value using selected operator. The call variable has to
be already defined by Set Call Variable action. Any condition referring to
an undefined value returns FALSE as result.

Call Variable Existence Tests if a variable exists or is undefined. This is useful for example when
table lookups are used to discriminate accurately between non-existing
and empty values.

Generic Text Match Compare two generic text expressions, supporting replacements.
Method Check SIP request method. Value has to be chosen from a list of allowed

methods. Only operators == and != are supported.
Register cache Check content of register cache. Operands From URI (AoR + Contact +

IP/port), From URI (AoR + IP/port), Contact URI (Contact + IP/port), To
URI(AoR),R-URI (Alias) are supported.

NAT Check first Via address whether the sender is or is not behind NAT. This
compares the SIP message source IP with the first Via address and works
only if the UA directly communicates with the SBC.

Read Call Variables Trigger a predefined query in provisioned tables by a specified key value.
The condition returns true if the lookup was successful, false otherwise.

Last Action Result Returns true if the last action completed successfully, false otherwise (ana-
logical to shell $? variable).

Blacklist Checks if a call-agent is on a black-list (or not). A call-agent is blacklisted
when it is not reachable to make sure that no futile attempts to send traffic
to it are undertaken.

Date and Time Checks whether a Datetime, Date or Time value is before or after now plus
an optional offset. The value may be in the form ‘2016-05-25 13:10:41’,
‘2016-05-25’ or ‘13:10:41’. The offset can be years, days, hours, minutes
or seconds, e.g. ‘2y’, or ‘30d’, or ‘12h’, or ‘5m’, or ‘1800s’.

Parallel Call Count Tests if the number of parallel calls is below or above a threshold. The
number refers to the specific place in rules execution flow from which the
condition was evoked. It does not refer to a global number of calls.

Parallel Call Count (global key) Tests if the number of parallel calls for a global key is below or
equal/above a threshold.

Parallel Call Rule Hit Count Tests if the number of parallel calls that has the current rule applied is be-
low a threshold. The number refers to the specific place in rules execution
flow from which the condition was evoked. It does not refer to a global
number of calls.
I.e. if this condition is used in a rule on A-rules of a realm, it will increment
its counter as long as the rule is successful (i.e. all conditions of it evaluate
to true). Once it reaches its threshold, the counter will not be incremented
any more and the condition will evaluate `false, until one of the calls that
were previously created by successfully applying the rule is terminated.
In the case of the routing rules, the outcome of the routing operation is
also taken into account in addition to the conditions in the rule. I.e. if no
matching dst CA is found with a “call agent based on r-uri” routing rule,
the counter is not incremented.

Request source Tests whether request being currently processed is generated by the SBC
itself, alternatively as a result of unattended call transfer.

6.2. Defining Rules 82

FRAFOS ABC SBC Handbook, Release 5.3

6.2.2 Condition Operators

Operators supported within general conditions:

Table 2: Condition Operators
Operator Description
== left operand equals given value
!= left operand does not equal given value
RegExp left operand matches given regular expression
does not match RegExp left operand does not match given regular expression
begins with left operand starts with given string
does not begin with left operand does not start with given string
Contain right operand is contained in
Contain RegExp sample described by right operand is contained in
Do not contain right operand is not contained in

It is important to know that if a mediation action (Section SIP Mediation) changes content of SIP message, the
condition will refer to the value after modification. E.g., if you apply the rule action “SetFrom(sip:new@from.
com)”, the “From URI” operator will return sip:new@from.com!

Some conditions types take special operators and/or values. Particularly the “Register Cache” condition tests if a
registration can be found in SBC’s cache. The condition uses a specific operator that determines which URIs are
used for the test.

Supported operators for “Register Cache” are:

Table 3: “Register Cache” Operators
Operator Description
From URI (AoR + Contact + IP/port) the user with given From URI and Contact is registered from given

IP:port
From URI (AoR + IP/port) the user with given From URI is registered with any Contact from

given IP:port
Contact URI (Contact + IP/port) a user with given Contact is registered from given IP:port
To URI (AoR) the user with given To URI is registered
R-URI (Alias) the user with given request-URI is registered

The value for the “Register cache” condition allows to refine the test. It can be one of the following:

Table 4: “Register Cache” Conditions
Condition Description
Is Registered true if registered using built-in registrar or cache
Is Not Registered true if not registered at all
Is Registered Locally true if registered using built-in registrar using the action “Save REGISTER

contact”
Is Not Registered Locally true if not registered using built-in registrar
Is Registered Remotely true if URI cached using “Enable REGISTER caching”
Is Not Registered Remotely true if URI not cached

Supported operators for “Date and Time” are:

Table 5: “Date and Time” Operators
Operator Description
is after now plus The left operand is checked for being after the current time plus an offset
is before now plus The left operand is checked for whether it is before now plus an offset
is after now minus The left operand is checked whether it is after the current time minus an offset
is before now minus The left operand is checked for whether it is before the current time minus an offset

6.2. Defining Rules 83

sip:new@from.com
sip:new@from.com
sip:new@from.com

FRAFOS ABC SBC Handbook, Release 5.3

Note that the offset is optional, and it is always added or subtracted to the current time before the comparison.

Available operators for “Supported header” and “Require header” conditions are:

Table 6: “Date and Time” and “Require header” Conditions
Condition Description
contains Checks for presence of given option tag in Supported or Require header field
does not contain Checks for absence of given option tag in Supported or Require header field

Supported operators for “Request source” are:

Table 7: “Request source” Operators
Operator Description
is Matches if request being currently processed was generated in accordance with right operand.
is not Matches if request being currently processed was NOT generated in accordance with right

operand.

Supported right operands for “Request source” are:

Table 8: “Request source” right side operands
Operand Description
local request locally generated by SBC
call transfer request locally generated by SBC as result of unattended call transfer

6.2.3 Condition Values and Regular Expressions

Values in a condition may be of several kinds. They are interpreted in the following descending order.

• |SBC| Escape Codes. These are characters prefixed by backslash (\) that are supposed to be interpreted
literally. These are normally used only for special characters. For example, \\ stands for backslash and \$
stands for the dollar character.

• |SBC| Replacements. These are variables that refer to different parts of SIP messages or internal variables.
They are referred to by $ character followed by variable name and replaced with value of the variable. The
variables that can be used are listed in Section Using Replacements in Rules.

• regular expressions. Regular expressions are expected if one of the regular-expression matching operators
is used. ABC SBC uses the “extended POSIX regular expression” syntax. That means, among others, that a
section enclosed in parenthesis can be referred to from back referencing expressions in actions’ parameters
(see Section Using Regular Expression Backreferences in Rules), the special characters * (star: zero to any),
+ (plus: one to any), ? (question mark: none or one), and {a,b} (curly brackets: from a to b) specify the
number of occurrences, . (dot) stands for wildcard, ^ (caret) stands for beginning of a string, $ (dollar)
stands for end of a string, | (pipe) stands for alternation and square brackets are used for character sets (^ as
leading character means negation).

• literals. This is the simplest case: a value is used for condition “as is” without further interpretation. For
example, in condition “R-URI User == foo”, the word foo is matched against the value of userpart of request
URI.

Note that this interpretation order determines the condition result. If a regular-expression includes the “end-of-
string” character, $, it must be preceded by backslash. Otherwise it will be interpreted in the previous step as
an attempt to use a replacement. For example, the “empty string” regular expression must be denoted as “^\$”.
Another more tricky example is “telephone numbers consisting of a star and two four-digit number blocks”. To
make sure that a regular expression matches the whole userpart of a URI and not just a part of it, it must begin
with “^” and end with “$”. Because star has a special meaning in regular expression language, it must be preceded
with a backslash. And because the backslash may have special meaning in the ABC SBC GUI, it must appear
twice. The resulting expression looks like this

6.2. Defining Rules 84

FRAFOS ABC SBC Handbook, Release 5.3

^*([0-9]{4,4})([0-9]{4,4})\$

Also note that an expression in the right operand can contain replacements, but can not contain back-references
as described in Section Using Regular Expression Backreferences in Rules. These are only available as action
parameters.

6.2.4 Actions

Actions define how a request shall be treated. There are many kinds of, described in the following sections of this
guide as well as in the Section Reference of Actions.

The key functionality available through the actions covers the following aspects of VoIP processing:

Table 9: Actions
Action Group Purpose
SIP Mediation Manipulation of identity and URIs, header fields, and response codes. See

Section SIP Mediation.
SDP Mediation Manipulation of codec and early media negotiation. See Section SDP

Mediation.
Management and Monitoring Logging traffic and reporting SNMP statistics. See Section Diagnostics

Dashboard and Using SNMP for Measurements and Monitoring.
Traffic Shaping Putting quota on SIP and RTP traffic and reporting violations. See Section

Traffic Limiting and Shaping.
Media Processing Handling RTP traffic: RTP anchoring, RTP/SRTP conversion, RTP inactivity

detection, audio recording and transcoding. See Section Media Handling.
Identity Verifying a 2FA PIN number via DTMF and enrolling a user for 2FA number

verification.
SIP dropping Eliminating non-compliant traffic, silently or with a SIP response. See

Section Manual SIP Traffic Blocking.
Scripting Processing of internal variables that are used to link multiple actions together

using intermediate results stored in variables. See Section Binding Rules
together with Call Variables.

Register Processing REGISTER caching and uncaching, registrar, throttling. See Section
Registration Caching and Handling.

External Interaction Queries to external servers by REST or ENUM or internal pre-provisioned
database. See section Advanced Use Cases with Provisioned Data.

NAT Handling Fixing SIP to facilitate NAT traversal in a safer way than by the SIP
specification. See Section NAT Traversal.

Other Some other actions.

6.2.5 Additional rule properties

It is possible to set some additional properties of the rules. Mostly for documenting and maintenance purposes.

Table 10: Additional rule properties
Property Description
Rule is active Allows to temporarily deactivate the rule.
Comment For documentation purposes.
Color Allows to color the background of rules, so they can be categorized in a way (e.g.

normalization, security rules, functional, adaptations, etc. . .)

6.2. Defining Rules 85

FRAFOS ABC SBC Handbook, Release 5.3

6.3 Using Replacements in Rules

In many cases, the conditions values and parameters of actions are not known in advance: they depend on ele-
ments of processed SIP messages and results of the message processing. Therefore, it is possible to compose the
parameters of special strings that refer to SIP processing status. These strings are called “replacements” and are
denoted by a dollar (“$”) sign followed by an identifier. Each instance of a replacement is replaced by its value
when the rule is evaluated.

For example, $aU is a replacement for the User part of the P-Asserted-Identity header; $th is a replacement for
the host part of the To header. The action Set R-URI with the parameter set to sip:$aU@$th combines mentioned
parts of P-Asserted-Identity and To headers of the incoming request and puts them into the request URI of the
outgoing request.

All supported replacements are listed in the table below.

Note that these special characters should be backslash-escaped as follows:

• \ → \\

• $ → \$

Note that where replacement expressions are supported, it is possible to use \r, \n and \t to input carriage-return,
line-feed and tab, respectively. This can possibly be used to i.e. insert multiple headers but it is likely to break
functionality and should be avoided unless absolutely necessary.

It is important to know that if a mediation action (Section SIP Mediation) changes content of SIP message, the
substitution expression will refer to the value after modification. E.g., if you apply the rule action “SetFrom(sip:
new@from.com)”, $fu will return new@from.com!

** Repl. group ** ** Replacements** ** Description**
$r $r. request-URI; note that the expres-

sion refers to current request URI
which may be changed during the
course of request processing

$ru user@host[:port] part of request
URI

$rU R-URI User
$rd R-URI Domain (host:port)
$rh R-URI Host
$rp R-URI Port
$rP R-URI Parameters

$f $f. From header
$fu user@host[:port] part of From

URI
$fU From User
$fd From Domain (host:port)
$fh From Host
$fp From Port
$fn From Display name
$fP From Parameters
$ft From Tag
$fH From header Headers

$t $t. To header
$tu user@host[:port] part of To URI
$tU To User
$td To Domain (host:port)
$th To Host
$tp To Port
$tn To Display name

continues on next page

6.3. Using Replacements in Rules 86

sip:new@from.com
sip:new@from.com
mailto:new@from.com

FRAFOS ABC SBC Handbook, Release 5.3

Table 11 – continued from previous page
** Repl. group ** ** Replacements** ** Description**

$tP To Parameters
$tt To Tag
$tH To header Headers

$a $a. P-Asserted-Identity header
$au user@host[:port] part of P-

Asserted-Identity URI
$aU P-Asserted-Identity User
$ad P-Asserted-Identity Domain

(host:port)
$ah P-Asserted-Identity Host
$ap P-Asserted-Identity Port
$aP P-Asserted-Identity Parameters
$aH P-Asserted-Identity Headers

$p $p. P-Preferred-Identity header
$pu user@host[:port] part of P-

Preferred-Identity URI
$pU P-Preferred-Identity User
$pd P-Preferred-Identity Domain

(host:port)
$ph P-Preferred-Identity Host
$pp P-Preferred-Identity Port
$pP P-Preferred-Identity Parameters
$pH P-Preferred-Identity Headers

$c $ci Call-ID
$C $C. complete Contact-HF

$Ci user@host[:port], port is included
if present in Contact-HF

$Cx x’ is anything supported for other
URIs

$s $si Source (remote) IP address
$sp Source (remote) port number

$d $di expected destination host
$dp expected destination port

$R $Ri Destination (local/received) IP ad-
dress

$R $RI Destination IP address – like above
but when a public IP is configured
on the receiving interface, its value
is used instead.

$Rp Destination (local/received) port
number

$Rf local/received interface id (0=de-
fault)

$Rn local/received interface name
(SBC interface name)

$RI local/received interface public IP
$Rt local/received transport protocol

one of: tcp, tls, udp, ws (Web-
Socket), wss (secure WebSocket)

$H $H(headername) value of header with the name
headername; not applicable to
from/to/ruri/contact for which spe-
cific replacements must be used

$HU(headername) header headername (as URI) User
continues on next page

6.3. Using Replacements in Rules 87

FRAFOS ABC SBC Handbook, Release 5.3

Table 11 – continued from previous page
** Repl. group ** ** Replacements** ** Description**

$Hd(headername) header headername (as URI) do-
main (host:port)

$Hu(headername) header headername (as URI) URI
$Hd(headername) header headername (as URI) do-

main (host:port)
$Hh(headername) header headername (as URI) host
$Hp(headername) header headername (as URI) port
$Hn(headername) header headername (as URI) dis-

play name
$Hp(headername) header headername (as URI) pa-

rameters
$HH(headername) header headername (as URI) head-

ers
$m $m request method
$V $V(gui.varname) value of Call Variable varname
$B $B(cnum.rnum)

value of backreference with
rnum number from the con-
dition with cnum number

$U $Ua register cache: originating AoR
$UA register cache: originating alias

$_ $_u(value) value to uppercase
$_l(value) value to lowercase
$_s(value) length of value (size)
$_5(value) MD5 of value
$_r(value) random number 0..value, e.g.

$_r(5) gives 0, 1, 2, 3 or 4
$# $#(value) value URL-encoded
$time $time(value) time format as described in the libc

strftime() function. ie: $time(%m-
%d-%y-%H-%M)

$attr $attr(value) value of the given global attribute
$cntr $cntr(value) value of the given counter defined

by User Defined Counters

e164 support
$e164 $e164(number, country_code) Convert the number parameters to

the e164 format of the country
code. ie: $e164(0635215099, FR)
= +33635215099

$T $T(number, country_code) Return the number type given the
country code. The value are the
same as the libphonenumber short-
url.at/iwxyJ.

$rc2cc $rc2cc(region_code) Return the country code of the re-
gion. ie: $rc2cc(FR) = 33

$cc2rc $cc2rc(country_code) Return the region code of the coun-
try. ie: $rc2cc(33) = FR

$tls_ $tls_subject TLS Subject Name formatted as in
RFC2253

$tls_subject_cn TLS Subject Common Name
$tls_issuer TLS Issuer Name formatted as in

RFC2253
continues on next page

6.3. Using Replacements in Rules 88

http://man7.org/linux/man-pages/man3/strftime.3.html

FRAFOS ABC SBC Handbook, Release 5.3

Table 11 – continued from previous page
** Repl. group ** ** Replacements** ** Description**

$tls_issuer_cn TLS Issuer Common Name
$tls_peername Return the verified peer name

6.3.1 Example Use of Replacement Expressions

In the following example, see Fig. Using Replacements, we set up the outgoing INVITE request as follows:

• set Request URI of the outgoing INVITE request to the user part of the P-Asserted-Identity header ($aU)
combined with the host part of the To header ($th) of the incoming INVITE request

• set host part of the To header to the value of the P-NextHop-IP header ($H(P-NextHop-IP)) of the incoming
INVITE request (the user part will not be changed)

• convert the user part and the host part of the From header into lower case (<sip:\protect\T1\textdollar_
l(\protect\T1\textdollarfU)@_l(\protect\T1\textdollarfh)>).

Fig. 3: Using Replacements

The effects of this transformation on a SIP message is depicted in Fig. Effects of using replacements:

6.3. Using Replacements in Rules 89

sip:\protect \T1\textdollar _l(\protect \T1\textdollar fU)@_l(\protect \T1\textdollar fh)
sip:\protect \T1\textdollar _l(\protect \T1\textdollar fU)@_l(\protect \T1\textdollar fh)

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 4: Effects of using replacements

6.4 Using Regular Expression Backreferences in Rules

Whenever a regular expression match is executed in a rule condition, the matched substrings can be later used in
subsequent actions or conditions. The matched result is referred to by so called “backreferences”.

Backreferences are used by the replacement $B(c.r). The first index in the backreference, c, denotes the index of
the condition, where the first condition has the index 1, the second condition the index 2, and so forth. The second
index, r, denotes the index of the substring selection in the regular expression, where the first selection has the
index 1, the second the index 2, an so forth.

In the following example, see Fig. Using backreferences, we use backreferences to separate protocol discrimi-
nator (“sip” or “tel”) from the rest of request URI. These two parts are matched in the regular expression in the
2nd condition and are therefore referred to as $B(2.1) and $B(2.2). Particularly, the example saves the protocol
discriminator from the request URI in an INVITE request to a call variable called uri_scheme. Further it enforces
the “sip” scheme for the R-URI of the outgoing INVITE request.

6.4. Using Regular Expression Backreferences in Rules 90

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 5: Using backreferences

6.5 Binding Rules together with Call Variables

Call Variables are a very powerful tool in the ABC SBC, because they can bind together different rules or rule
sets. Call Variables can be set by rules to any value using the Set Call Variable action. This variable will the
persist during the lifetime of the call. They can be set to a different value by a subsequent rule, again with the Set
Call Variable action.

Fig. 6: Setting Call Variables

Values of Call variables can be tested with the Call Variable condition using several operators: ==, !=, “RegExp”,
“does not match RegExp”, “begins with” and “doesn’t begin with”. Operands may be literal strings, regular ex-
pression if the “Regexp” operators are used, and they may contain Replacements (see Section Using Replacements
in Rules).

An additional condition, “Call Variable Existence”, allows to test if a variable exists and accurately discriminate it
from the case when it is empty-valued. This may be particularly handy when table lookups are used as described
later in Section Provisioned Tables. Otherwise reference to undefined variables always returns empty string.

6.5. Binding Rules together with Call Variables 91

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 7: Testing Call Variables

They can also be used in other actions using the replacement expression $V(gui.varname), where varname refers
to the name of the variable, e.g. $V(gui.caller_group).

Fig. 8: Using Call Variables

The following example shows how a variable is assigned a value using the “Set Call Variable” action (see Figure
Example for using Call Variables), tested for a specific value “restricted” (see Figure Testing Call Variables) and
referred to from an action for adding a new Reason Header field using the $V replacement (see Figure Using Call
Variables).

Fig. 9: Example for using Call Variables

6.5. Binding Rules together with Call Variables 92

FRAFOS ABC SBC Handbook, Release 5.3

6.6 SIP Routing

The key functionality of the ABC SBC is that of SIP routing: based on criteria chosen by the administrator, the SIP
destination for a SIP dialog is chosen. The routing decision is the step “B” in the A-B-C process: After A-rules
are applied based on who sent the SIP traffic to the ABC SBC, the destination Call Agent is chosen in the B-rules.
The final step is processing of the outbound C-rules, that are specific to the Call Agent chosen in the step B.

The routing decision is also an important part of the network reliability concept: it has implications to the way
how traffic is re-routed if downstream destinations are unavailable or overloaded.

Unlike steps A and C, the routing step B is global: it is executed for every combination of inbound and outbound
call agents and realms. It can be seen like the wiring board between these. Also unlike A and B rules, matched
rules can have only one action: selection of the destination.

The routing rules are processed sequentially until one is found that matches. Repetitive rules, such as least-cost-
routing tables, can also be managed by provisioned tables as described in the Section Provisioned Tables. If no
route matches, the ABC SBC stops processing the SIP request and returns a 404 SIP response.

The outcome of the routing process is unique determination of the destination Call Agent. This decision deter-
mines the following aspects:

• which C-rules are executed,

• which backup Call-Agent is used, if forwarding to the chosen Call Agent fails,

• which interfaces are used for forwarding,

• which IP address or addresses are used as next hop for forwarding.

Note that the routing process is applied only to dialog-initiating or out-of-dialog SIP requests. During the dialog
life-time, routing of in-dialog SIP requests follows a fixed path established in the process of the dialog initiation
with the peering SIP devices. The path may or may not be the same as that of dialog-initiating transaction and
is formed using Record-Route and Contact header-fields as governed by the RFC 3261 specification. Only if
the “use on first request only” option is turned off, or “Dialog NAT handling” is enabled, the ABC SBC routes
subsequent requests in a sticky way to the same hop as the initial one.

The following subsections describe how routing rules are organized and how to use the three types of routing rules:
“static” for well-known next-hop Call Agents, “table-based dynamic” for a massive amount of static routes, and
“request-URI based” for destinations identified in request URI. Eventually we show how the abstract destination
is translated into next-hop IP addresses for request forwarding.

6.6.1 Routing Rules (B)

The routing rules are an ordered list of routes, which are processed one by one after completion of A rules
processing. When the first rule condition matches, the destination call agent is chosen and route processing stops.

The configured Routing (B) rules can be viewed when clicking on the “Routing” menu entry.

6.6. SIP Routing 93

https://tools.ietf.org/html/rfc3261.html

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 10: List or routing rules

A new routing rule can be created either at the beginning of the list (“Insert new Rule”) or at the end (“Append
new Rule”).

When creating a new Routing (B) rule, one or more conditions can be entered, see Fig. Define matching conditions
for routing, similar to the other types of rules (inbound (A) and outbound (C) rules).

Fig. 11: Define matching conditions for routing

It is also possible to define a default routing rule by omitting the condition(s). In this case, the rule will always
match, and thus finish the Routing rules evaluation. In case there is no such default rule and no other rule matches,
the ABC SBC answers the request with a 404 response.

There are several types of routing rules, that can be combined with each other and processed in sequential order:

• Static route – In a static route, all data describing the routing decision must be entered manually. If the
static route matches, routing finishes, otherwise it proceeds to the next rule.

• Dynamic route – if multiple repetitive rules, such as with Least Cost Routing, are configured, they are
better placed in a provisioned table as described in the Section Provisioned Tables. To make a lookup in the
table, select the table name in the “Route using” drop down list and indicate by what key the lookup shall
be performed. Like with static routes, if a matching entry is found, routing finishes, otherwise it proceeds
to the next rule.

• Call Agent based on R-URI – the ABC SBC tries to find a Call Agent that matches host in request URI.
This can be particularly useful if A-rules change hostname in request URI, for example by ENUM lookup.
If the lookup yields an address of a valid Call Agent, it is used for routing and routing finishes, otherwise it
proceeds to the next rule.

6.6. SIP Routing 94

FRAFOS ABC SBC Handbook, Release 5.3

These route types are described in more detail in the following sections.

Validity of routing rule can be limited to some nodes only. In this case the routing rule is not executed on other
nodes. Routing rule can be assigned to only those nodes which belongs to any of the config groups assigned to the
particular routing table.

6.6.2 Static Routes

Static route is the simplest type of routing rule: the administrator explicitly chooses the destination Call Agent. If
no further specific treatment is desired, that’s all. The Call Agent is chosen, subsequently its C-rules are executed
and eventually signaling is forwarded through the interface associated with the Call Agent. This routing method is
applicable to all Call Agent types but those identified by a subnet address – these are used primarily for matching
of incoming traffic and do not uniquely identify a destination forwarding address.

The choice of Call Agent is accompanied by several other options. The most important is that of routing method
which specifies how the next-hop IP address is determined. Either it is determined from request URI or from pre-
provisioned information. Note that whichever method is chosen to determine the next-hop IP address, Call-Agent
does not change and its C-rules are used for request processing. Both methods may yield multiple IP addresses,
in which case the ABC SBC load-balances among them by their respective priorities.

The “Route via R-URI” method uses the request URI to find out the next-hop IP address. That is particularly
useful when A-rules altered the request URI using actions like reverse registration cache or ENUM lookup. If the
host part of request URI includes a DNS name that resolves to multiple destinations per RFC 3263, the ABC SBC
load-balances among the respective destinations by their priorities.

If “Set Next Hop” (also known as “outbound proxy”) is used instead, the next-hop IP address is determined using
pre-provisioned information. Either the IP address (or addresses) associated with the Call Agent is taken, or these
are explicitly overridden using the option “Use another destination instead of CAs’ destination(s)”. Please note
that, if “Use another destination instead of CAs’ destination(s)” is used, backup CA will not fully work (C rules
from the CA will be applied to outgoing request). In that case, if the first CA fail, all calls are sent to the same IP,
located in “Use another destination instead”. Further method-specific options include:

• “Use on first request only” – this option changes default behavior for forwarding subsequent in-dialog
requests. By default when turned off, all subsequent outbound requests will follow exactly the same the
path of the previous dialog-initiating request. If however this option is turned on, the next-hop logic for
subsequent requests is governed only by the SIP standard procedures. Particularly, if the next hop in the
INVITE path was a non-record-routing proxy, it will not be included in request’s path.

• “Update R-URI Host”. This option rewrites host part of request URI with the address of the next hop. By
default it is turned off and the request URI remains untouched when forwarding.

• “Add Route HF”. This option is also known as “preloaded Route”. It prints the next-hop destination in
Route Header-field. Use only if downstream SIP hop is known to require such behavior.

The following advanced options can be also used with both methods:

• “Replace DNS name in R-URI through the resolved IP address” makes sure that if DNS names appears in
request URI, it is rewritten to IP address before forwarding.

• “Force transport”. Allows to override transport protocol to be used for the next hop. One of the following
protocols can be chosen: UDP, TCP, TLS.

• “Enable redirect handling”. If this option is turned on, incoming 302 are not passed upstream. Instead, the
ABC SBC takes content of Contact header field and uses it as another next-hop for forwarding the original
request. Particularly the Contact URI in the 302 response is used to rewrite request URI, determine the
next-hop IP address and look up a Call Agent whose C-rules are processed. Note that an error occurs and
a 500 response is sent upstream if none or more than one matching Call-Agents are found, or the Contacts
include DNS names. Use this option with care only for trusted destinations since the 3xx responses may
greatly impact where and how requests are forwarded.

An example is shown in Figure Static Routing destination: the Call Agent “users” is chosen so that its C-rules
will be processed. There is no additional IP address included in the “set-next-hop” choice of routing, so that the
dialog-initiating request is forwarded to IP addresses associated with the particular Call Agent.

6.6. SIP Routing 95

https://tools.ietf.org/html/rfc3263.html

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 12: Static Routing destination

6.6.3 Table-based Dynamic Routes

Long repetitive routing rule sets can be better managed as tables. All other aspects of the routing logic remain the
same as with statically defined rules.

To deploy dynamic rules the following steps must be performed:

• definition of a routing table (see Section Configuring Tables)

• definition of routing lookup performed against the table in B-rules (see example in Figure Configure a route
lookup in a provisioned routing table)

• filling in the routing table with routing data (see example in Figure Adding a new entry to routing table)

The lookup definition requires two parameters: name of the table defined in the first step, and the value used to
lookup a matching table row defined in the second step. The value is defined in form of a replacement expression.
For example, $rU can be used to trigger lookups by user part of request URI.

6.6. SIP Routing 96

FRAFOS ABC SBC Handbook, Release 5.3

The table than includes rows identified by unique keys. In the screenshots bellow, the user part of request URI
($rU) is compared against a row with key 911. If a match occurs, the call agent “external_callagents” is used for
call forwarding.

When the table lookup is performed and the value matches no key, routing proceeds to the next entry in the routing
table. If there is no more such, routing fails and the SIP request is declined using the 404 SIP response.

Fig. 13: Configure a route lookup in a provisioned routing table

6.6. SIP Routing 97

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 14: Adding a new entry to routing table

6.6.4 Request-URI Based Routes

In some scenarios, the next-hop Call Agent is not exactly known at the time of devising a routing policy. Instead
it is known that a request URI identifies the Call Agent. This is often the case if the request URI is rewritten by an
external query, such as ENUM or REST. There would be little point in formulating rules like “if a CA’s IP address
present in R-URI, route to the CA” for every single CA.

Therefore there is the “route via R-URI” routing type, which finds a Call Agent based on address in request URI
and if found, routes to it.

Note that this is different from the “route via R-URI” option, which is only used to override the transport destina-
tion but does not determine the Call Agent with its rules.

6.6. SIP Routing 98

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 15: Route by Request URI

Like with Static Routes, there are two routing methods for determining the next IP-hop: Either it is taken from
request-URI (the “Route via R-URI” method) or it is taken from Call Agent’s profile. The difference is subtle
because by use of the lookup an IP address gained from the request URI must match an IP address of a Call Agent.
A difference may occur when some other IP addresses linked with the DNS name are different from those linked
with the Call Agent’s profile. Also if an IP address comes in request URI and the “route-via-r-uri” method is used,
alternate destinations associated with the Call Agent will not be used.

6.6.5 Determination of the IP destination and Next-hop Load-Balancing

When the destination Call Agent is selected, one or multiple IP addresses are chosen for forwarding. These may
come from Call Agent definition, explicit addresses in the route or from request URI. Capability to choose more
than one IP address is important for load-balancing downstream hosts and for dealing with their unavailability. If
there are multiple IP addresses (so called “destination set”) the ABC SBC “hunts” through them based on their
priorities to find one that is responsive.

The destination set is formed depending on the choice of routing method described in previous sections. It works
the same way for static, dynamic and request-URI based types and it can be one of the following:

• if the “Set-next-hop” routing method is chosen without the “Use another destination instead of CAs’ desti-
nation(s)” option, the addresses specified in Call Agent’s profile are used

• if the “Set-next-hop” routing method is chosen with the “Use another destination instead of CAs’ destina-
tion(s)” option, the addresses specified in this option are used. Addresses associated with the Call Agent are

6.6. SIP Routing 99

FRAFOS ABC SBC Handbook, Release 5.3

not used for forwarding.

• if “Route via R-URI” is chosen, the address is taken from the request URI.

If an address in the destination set is a DNS name, it is resolved to IP address(es) using procedures specified in
RFC 3263 before further processing.

If the resulting destination set includes multiple entries they are attempted in successive order. An 8-second timer
is used to try up to 4 destinations, so that the hunting attempts complete before standard SIP transaction timeout
of 32 seconds. A 503 response makes the ABC SBC to attempt the next destination in the set immediately.

The hunting order is determined by priorities specified in DNS, “Use another destination” option or CA profile.
The way priorities are set complies to the RFC 2782: the ABC SBC initially contacts hosts with lowest-number
priorities. If there are multiple hosts with the same priority they are tried by probability as defined in their weight
field. The weight field specifies a relative weight, larger weights are given a higher probability of selection.

When no responsive destination is found, the ABC SBC will check if there is a backup Call Agent defined in the
current Call Agent’s profile. If so, it will undo previous mediation changes, process backup Call Agent’s C-rules
and retry the IP calculation process for the backup Call Agent.

The whole process is shown in Figure Flowchart of Process for Determination of the Next-hop IP Address.

6.6. SIP Routing 100

https://tools.ietf.org/html/rfc3263.html
https://tools.ietf.org/html/rfc2782.html

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 16: Flowchart of Process for Determination of the Next-hop IP Address

6.6. SIP Routing 101

FRAFOS ABC SBC Handbook, Release 5.3

6.6.6 IP Blacklisting: Adaptive Availability Management

Attempts to forward traffic to IP addresses known to be unavailable would be futile and impair call setup time.
Therefore the ABC SBC keeps a “destination blacklist” of IP addresses that were detected as unresponsive. The
ABC SBC dispatches no traffic to such destinations until the blacklisting time-to-live expires and the destination
is removed from the blacklist.

Blacklisting is done when a normal SIP request to a destination fails. Additionally the ABC SBC can proactively
probe destinations so that their unavailability is detected even before real traffic reaches them. Similarly their
renewed availability is detected earlier thanks to the probes even while they are on the blacklist. This is called
“Destination Monitor” or “OPTIONS monitoring”.

OPTIONS monitoring can be enabled for any SIP Call Agents that are identified by IP addresses or DNS name. To
turn it on, the “Monitoring Interval” under Call Agent’s “Destination Monitor” options must be set to a non-zero
value. The OPTIONS request are then sent in this interval periodically and have the following form:

OPTIONS sip:10.0.0.234 SIP/2.0
Via: SIP/2.0/UDP 10.0.0.155;branch=z9hG4bKo8lw1a70;rport
From: <sip:10.0.0.155:5060>;tag=b280210db5678d3c77dfc06c07acaac3
To: <sip:10.0.0.234>
CSeq: 32603 OPTIONS
Call-ID: 5F1BBCB9-57149447000B9232-0FF75700
Max-Forwards: 0
Content-Length: 0

On error, the destination address is placed on blacklist. If it is already there and the OPTIONS transaction com-
pletes successfully, the destination address is taken off the blacklist immediately.

Note that this type of blacklisting is different from that used in the context of security policies as described in the
section Manual SIP Traffic Blocking.

To turn IP blacklisting on, set the time-to-live blacklisting period to a positive value under global options in
“Config → Global Config → Default Destination Blacklist TTL” or under Call Agent properties as shown in
Figure Configuration of Destination Blacklisting under Call Agent Properties.

6.6. SIP Routing 102

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 17: Configuration of Destination Blacklisting under Call Agent Properties

IP blacklisting occurs in an almost automated way and does typically require minimum administrative attention.
Addresses are added to the blacklist once they are identified as unavailable and held on the list for a predefined
period of time, known as “time-to-live”. The following procedures may still be of use to an administrator:

• If ABC Monitor is used along with the ABC SBC, the history and status of the monitored Call Agents can
be tracked in the “Connectivity CA” Dashboard as shown in Figure Call Agent Availability Lanes.

• Monitoring blacklisted addresses. It is possible to inspect the addresses which are currently blacklisted. The
list is available from the main menu under “Monitoring → Destination Blacklist”. (See Section Destination
Blacklists)

• Manual blacklisting. The administrator may add a new address to the blacklist from the main menu under
“Monitoring → Blacklist → New Destination/Save”.

• Testing presence on blacklist in rules. Rule conditions may include a test if a Call Agent is present on a
blacklist using the “Blacklist” condition type. The condition returns true of all Call Agent’s IP addresses
are blacklisted.

• Changing Time-to-Live (TTL). The addresses are held on blacklist for period of time specified under “Con-
fig → Global Config → Default Destination Blacklist TTL”. This value is used for newly blacklisted
destinations, unless a CA-specific TTL takes precedence. If TTL is set to zero, no blacklisting takes place.

6.6. SIP Routing 103

FRAFOS ABC SBC Handbook, Release 5.3

• Configuring Call Agent specific handling. There are the following options available under Call Agent
profile:

– Destination Blacklist TTL (seconds). This value overrides the globally specified time to live.

– Blacklist grace timer (ms). Normally, a destination is blacklisted when the transaction timer expires.
This value provides some extra time before a downstream element is blacklisted after the transaction
timeout. If the destination responds before the grace timer expires, then it is not blacklisted. That is
especially useful when there is a proxy server between the ABC SBC and an unresponsive User Agent
Server. A too aggressive blacklisting process would otherwise blacklist the proxy before it times out
and sends a 408 message and make the proxy and elements behind it unreachable.

– Blacklist error reply codes. This feature allows to blacklist destinations that answer to monitoring
requests using these codes. When left empty, blacklisting happens when the reply code is 503. When
set, blacklisting happens if the status code of a reply matches one of the codes provided in this param-
eter. To activate the feature, include a comma-separated list of response codes that lead to inclusion
of a destination on a black-list. Blacklist error reply codes also controls whether to failover to backup
CA. When blacklist error reply codes are left empty, failover happens:

* When the destination responds with 503

* when the reply is internally generated by the SBC (i.e. unable to resolve the destination address)
and the generated reply code is not 483, 488, 400

When blacklist error reply codes are set, failover happens:

* When the destination responds with one of the reply codes in the list.

When the reply is internally generated by the SBC and the code is 408, failover always happens
regardless of the blacklist error reply codes field being set or not. Having reply codes 300, 301 or 302
in the list will not be effective as a means to failover to backup CA when redirect handling is active and
reply includes redirect destinations. Blacklist error reply codes are also respected for failover during
processing multiple ENUM query results.

– Destination Blacklist for in-dialog requests. This feature allows to blacklist destinations during in-
dialog requests. This can be used to allow in-dialog failover to another destination if the currently
used destination becomes unavailable during a dialog and thus lands on the destination blacklist.

– Monitoring interval (seconds). If set to a non-zero value, the ABC SBC tests availability of the desti-
nation by sending test message (OPTIONS). This allows to detect unavailable destinations even before
a real call hits it. It is recommended to use a value shorter than the blacklisting TTL: if the monitoring
period was longer, unresponsive destinations would be considered healthy in the time-window after
removing from blacklist before the next monitoring check.

Whenever an address is added to the IP blacklist, an event of type ‘notice’ is generated. The same occurs when the
TTL expires or the destination becomes responsive and the address is removed from the blacklist. The monitoring
status is regularly reported to the ABC Monitor using “dest_monit” events.

6.6.7 SIP Routing by Example

One important configuration step is the definition of routing rules, i.e. to which IP address shall incoming traffic
be forwarded. If a proper routing entry is not set up, the ABC SBC does not know where to forward traffic and
returns the SIP reply “404 Not Found”.

In our example, the routing configuration is very simple: What comes from the external Realm is routed to
the internal Realm and vice versa. That takes two rules defined from the “Routing” section of the web user
interface: Traffic coming from the Call Agent “Proxy” is routed to the Call Agent “Users” in the external realm
and traffic coming from the “external” Realm will be routed to the “proxy” Call Agent in internal Realm. The
resulting configuration is depicted in Fig. Example Routing Rules.

6.6. SIP Routing 104

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 18: Example Routing Rules

When you define the respective routing destinations, specifying the abstract Call Agent may not be enough.
You may additionally need to help the SBC to determine to which IP address to forward the SIP message and
which hostname to use in the Request URI. For example, traffic leaving the SIP proxy carries the final destination
in the Request URI. You must configure the ABC SBC to use the IP address from the request-URI as the next hop.
The particular configuration is called Route via R-URI. On the other hand, all traffic from the public Internet goes
to the same proxy server. The appropriate configuration choice is Set Next Hop. You may specify the IP address
explicitly, if you do not do so, the IP address is taken from definition of the Call Agent.

The routing rule for the proxy-to-external traffic flow is shown in the Figure Routing Rule for internal to external
traffic, whereas the rule for the opposite direction is shown in the Fig. Routing Rule for external to internal
traffic. That’s it. We now have the routing policy which specifies that traffic from the external Realm shall be
forwarded to the internal Realm and vice versa. This simple policy can in fact serve an incredible number of
use-cases.

6.6. SIP Routing 105

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 19: Routing Rule for internal to external traffic

6.6. SIP Routing 106

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 20: Routing Rule for external to internal traffic

Nevertheless, if needed it can use more sophisticated matching criteria to specify routing decisions: It can divert
Message-Waiting-Indication traffic to a different server based on SIP method, different media servers based upon
codecs in use, different destinations based on custom-defined header fields, and so on, and so forth.

6.6. SIP Routing 107

FRAFOS ABC SBC Handbook, Release 5.3

6.7 View A-B-C rules

There is a possibility to view A-B-C rules together for particular SIP message, by clicking on the “ABC” icon for
a routing rule on “Routing” screen:

Fig. 21: List of routing rules

By clicking that icon, new screen is displayed showing A and C rules and the selected routing rule.

If the routing rule contains “Source Realm” or “Source Call Agent” conditions, then this Realm / Call Agent is
pre-selected in the top dropdown for A rules and A rules of this Realm / Call Agent are displayed in the upper part
of the screen.

Likewise, if the routing rule use static routing and a Call Agent is selected as the route destination, this Call Agent
is pre-selected in the bottom dropdown for C rules and C rules of this Realm / Call Agent are displayed in the
bottom part of the screen.

6.8 SIP Mediation

SIP Mediation features of the ABC SBC allow administrators to introduce massive changes to the signaling pro-
tocol. This is often necessitated by devices with imperfect SIP support, differing practices such as dialing plans
between peering providers, or need to implement network-based services such as Private Asserted Identity (RFC
3325).

The actual mediation rules are placed in inbound and outbound rules. The inbound rules are used to modify
incoming traffic coming from a Realm or a Call Agent to comply to local policies. For example, the inbound rules
may transform telephone numbers from a local PBX’s dialing plan to the global E.164 standard. All subsequent
actions already work with modified SIP messages. The outbound rules are used to modify outgoing traffic to
a form that the receiving Call Agent can or shall process. For example the outbound rules can remove all but
low-bandwidth codecs for the target known to be on a low-speed link.

It needs to be understood that mediation is a double-edged sword: massive changes to the signaling protocol can,
if not configured properly, cause substantial harm to interoperability. If the ABC SBC encounters, that a SIP
message modified by mediation rules breaks standard too far (such as if it generates an empty header-field), it
discontinues processing of the message and sends a 500 response back. Still many changes may be syntactically
legitimate, remain undetected and result in impaired interoperability.

This section discusses mediation of the signaling protocol, SIP. Mediation of media, that includes codec negotia-
tion and transcoding, is documented in the section Media Handling.

6.7. View A-B-C rules 108

https://tools.ietf.org/html/rfc3325.html
https://tools.ietf.org/html/rfc3325.html

FRAFOS ABC SBC Handbook, Release 5.3

6.8.1 Why is SIP Mediation Needed?

There are multiple root causes why SIP devices have often troubles communicating with each other. There are
different standardization groups working on SIP. Different developers often interpret the same specifications dif-
ferently. Operators deploy different operational and naming practices.

The ABC SBC has the capability to overcome some of these interoperability problems by manipulating the content
of SIP messages so that they better fit the expectations of the receiving side. One can distinguish between several
frequent interoperability issues: compatibility between various SIP protocol extensions, dealing with deviations
from the specification and best current practices caused by non-compliant devices and operating procedures, and
incompatibility between different transport protocols used for conveying SIP signaling.

SIP Standard Extensions:

There are various flavors of the SIP protocol. Even the basic SIP IETF standard is extended by tens of accom-
panying specifications, some of them are deployed, some of them not. Several other standardization bodies have
chosen to add even more extensions specific to their use of SIP. In the fixed environment, the TISPAN specifica-
tions <http://www.etsi.org/tispan/> are used. In the mobile network environment the 3GPP IMS specifications
<http://www.3gpp.org/> are the most favored. SIP-I <http://www.itu.int/rec/T-REC-Q.1912.5-200403-I/en> is
proposed for trunking scenarios in which SIP is used as the signaling protocol used to connect SS7 based net-
works over an IP core network.

The differences between the SIP specifications from IMS, IETF and TISPAN are mainly restricted to
the addition of certain headers, authentication mechanisms and usage of certain SIP extensions such
as NOTIFY/SUBSCRIBE or certain XML body formats.

In the context of interoperability of SIP flavors, the ABC SBC can provide the following services:

• Stateless SIP header manipulation: The ABC SBC can be configured to remove certain headers and add
others. This way, The ABC SBC can for example delete headers that are useful in an IMS or TISPAN but
not in an IETF SIP environment.

• Message blocking: Certain SIP messages might be useful in one network as they provide a certain service.
However, if this service is not provided across the interconnection points then exchanging them across the
networks does not make sense. SBCs can be configured to reject certain messages such as NOTIFY if
presence services are not provided across the network for example.

Deviations from the SIP Standard and Best Practices:

The experience from various interoperability events shows that different vendors interpret the SIP specifications
slightly differently. Especially parts that are specified with the strength of “SHOULD” or “MAY” are often
implemented as a “MUST” or ignored completely. This makes the communication between two components from
different vendors sometimes impossible. Sometimes even if the SIP equipment implements the standard correctly,
operators practices for deploying SIP differ to the extent that the protocol needs to be fixed.

The ABC SBC can be configured to overcome some of these issues and to fix certain issues that cause these
interoperability problems by offering the following features:

• Existence of certain headers: Some SIP components expect to see certain SIP headers with certain infor-
mation, for example a Route header pointing to them. Others might not bother to add this header. The
ABC SBC can be configured to take these special interpretations of the implementers into account before
forwarding a request and add or remove problematic headers.

• Location of information: Some SIP components expect to see their address in the Request-URI whereas
others want to see it in the Route header or both. This might not always be how the location information is
included in the SIP request especially if a request was redirected from one component to another.

• Tags and additional information: Again some SIP components might expect to see certain tags and param-
eters attached to certain headers such as rport with a Via header whereas other SIP components might not
add them.

SIP Transport:

SIP can be transported over UDP, TCP and TLS. The capabilities of different SIP implementations might vary with
this regard. That is, some components could support UDP but not TCP and others prefer to use TLS. Therefore,

6.8. SIP Mediation 109

FRAFOS ABC SBC Handbook, Release 5.3

the ABC SBC can be used to convert the transport protocol used by the source to the transport protocol preferred
by the destination.

Default SIP transport for outgoing requests is UDP. This can be changed via one of the following:

• SIP Routing is done via the Route via R-URI method and the R-URI contains transport parameter,

• SIP Routing parameter Force transport,

• Call Agent configuration parameter Force transport.

Note that when forcing the transport via one of the Force transport configurations, the transport parameter in
R-URIs will not be updated unless at least one of the following holds true:

• The routing method is Route via R-URI,

• R-URI transport parameter is set explicitly via Set RURI parameter action.

6.8.2 Request-URI Modifications

The most common manipulation is that of request-URI. Request URI describes who should receive the SIP request.
It may include an E.164 telephone number (like sip:+1-404-1234-567@pbx.com), a PBX number (sip:8567@pbx.
com) or be formed as an email-like address (sip:amadeus@mozart.at). A typical reason for changing the request
URI is normalization of different dialing plans. As an example you may translate a local extension number
(768) for a PBX with prefix (+1-404-1234) into a globally routable E.164-based URI sip:+1-404-1234-567@
national-gateways.com. You can use several types of modifications to the request-URI, all of them are applied
only to the first session’s request. The most important request-URI actions are the following:

• Strip RURI user: strips the specified number of leading characters from the user part of request URI. For
example strip-RURI-user(1) applied to the PBX URI 8567@pbx.com yields the extension sip:567@pbx.
com without the local “8” prefix. The action is applied as many times as it is called.

• Prefix RURI user: inserts a prefix to the user part of request URI. For example, prefix-URI(“+1-404-
1234-“) applied to the URI from the previous step yields sip:+1-404-1234-567@pbx.com. The result is
accumulated if the action is applied several times.

• Append to RURI user: appends a suffix to the user part of request URI. The parameter takes suffix value.
It may include replacement expressions. The result is accumulated if the action is applied several times.

• set RURI: entirely replaces the request URI with a new value.

• set Contact URI host: entirely replaces the Contact URI host with a new value. Note that the update isn’t
run on REGISTER replies.

Also note that the resulting URI not only describes the recipient, but its host part is used to determine the next hop
IP address if a route is used with the Route via R-URI option.

It is also worthwhile mentioning that URIs often represent additional services a caller gets. For example if a caller
prefixes number of an O2 subscriber in Germany with 33, his call will be directly routed to the recipient’s voice-
mail. However administrators would be ill advised to overload request URI with more than routing functionality.
An infamous example is using a plain-text password as phone number prefix for authentication. The fraudster
Edwin Pena <http://www.fbi.gov/newark/press-releases/2010/nk020310a.htm> found that out, yielded more than
10 million minutes of VoIP service and in 2009 eventually two years in federal prison.

Several other mediation actions can process sub-parts of request-URI. They include:

• Set RURI host

– Replace host(:port) part of Request-URI with a new value specified in the GUI.

– Parameters: new host or host:port

• Set RURI parameter

– Add or replace parameter of Request-URI.

– Parameters: RURI parameter name, RURI parameter value

6.8. SIP Mediation 110

sip:+1-404-1234-567@pbx.com
sip:8567@pbx.com
sip:8567@pbx.com
sip:amadeus@mozart.at
sip:+1-404-1234-567@national-gateways.com
sip:+1-404-1234-567@national-gateways.com
mailto:8567@pbx.com
sip:567@pbx.com
sip:567@pbx.com
sip:+1-404-1234-567@pbx.com

FRAFOS ABC SBC Handbook, Release 5.3

• Set RURI user

– Replace user part of Request-URI with a new value.

– Parameters: new user part.

• Set RURI user parameter

– Add or replace parameter of user part of Request-URI.

– Parameters: parameter name, parameter value.

6.8.3 Changing Identity

Identity of SIP session participants is also described in many other SIP header fields that sometimes need to be
changed.

Every SIP request must include URIs of session initiator in the From header-field and URI of intended recipient
in the To header field. The SIP standard has intended to use the From and To header field only as informational
description of how a session was started . URI of the originator in the From header field has limited identity value
as the plain-text URI is not covered by a message integrity check and can be easily changed by elements in the
SIP-path. Even a user client is quite free to put anything in the URI unless there is a client’s outbound SIP proxy
enforcing specific address for a digest-verified caller.

The URI in To header-field may have little relation to the actual recipient of a SIP request as the actual next hop is
stored in the request URI.

Notwithstanding how “light-weight” information From and To header fields convey, some operators deploy poli-
cies based on them. They may only accept requests with From and To URIs that comply to their local convention.
There were even cases when To URI was used for routing. Therefore it is often useful to modify To and From
header fields. These modification rules apply to the first request of a SIP dialog. From and To in all subsequent
messages of a session are transformed transparently in compliance with the SIP protocol specification. The most
important To and From changing actions are the following:

• Set From / Set To :replaces the whole From/To header field with a new value, for example “Jasmine Blue”
sip:jasmine@blue.com. Only “tags” in the From/To header-fields remain unchanged to guarantee unique
identification of SIP dialogs.

• Set From User / Set To User: replaces the user part of the From/To URI.

• Set From Host / Set To host: replaces the host(:port) part of URI with a new value

• Set From / To display name

– Set only the display name of the From / To header.

– Parameter: new display name.

Additionally, the SIP protocol is using digest authentication identity (RFC 2617) to verify who is initiating a
request. If the digest identity of a request originator needs to be changed, the action UAC auth is used. It takes
the following parameters needed for the authentication procedure: username, password and realm. A request
forwarded downstream and challenged to authenticate by a downstream server is then resubmitted by the ABC
SBC using these credentials. Note that the input fields support replacement expressions. If i.e. password contains
special characters such as $, they need to be escaped with a backslash.

6.8. SIP Mediation 111

sip:jasmine@blue.com
https://tools.ietf.org/html/rfc2617.html

FRAFOS ABC SBC Handbook, Release 5.3

Substitution Expressions

SIP message modifications typically “glue” pieces of the original messages and intended changes. For example, a
new To URI is to be formed using destination’s hostname (say “target-gw.com”) and telephone number in request
URI (say “+1-404-1234-567”). The corresponding set-To action needs to access the telephone number in the
original request. To address cases like this, the mediation parameters may refer to elements of the original message
by so called Replacement expressions. These always begin with a $ character. In our example, the user part of the
request URI is referred to as “$rU” and the action has the form:

Set To (“sip:\protect\T1\textdollarrU@targetgw.com”).

Other important replacement expressions are $fu for From URI, $tu for To URI, $si for source IP ad-
dress, $H(headername) for value of a header field.

If you need to access some sub-parts of the original SIP message without an addressable name, simple substitution
expression are not enough. Then regular expressions have to be used to select them. This is called „regexp back-
references. The backreference expressions refer to parts of SIP messages that were matched in rules’ conditions.
For example, to access the protocol discriminator in a URI, you need to create a rule condition matching it using
regular expression, and then refer to the matched expression. You would be forming a rule like this:

Fig. 22: Example of a Condition Being Referred to by a Backreference Expression

the second condition’s first sub-part (i.e. matched by the expression in the first parentheses) of the regular expres-
sion would identify the protocol discriminator and yield “sip” for SIP URIs. The expression would be formed as
this

$B(2.1)

6.8.4 SIP Header Processing

URI adaptation shown in previous paragraphs is important for harmonization or routing and identity representation
between different SIP devices and administrative domains. Yet there are many other header fields conveying
important information in need of adaptation. Worse than that, some of them are not even known at the time of
writing this documentation. That’s because some of them may be proprietary – for example Sipura SIP phones
add QoS reports to every BYE message they send. Some header fields may even be specified in recently published
standard. Yet even then the ABC SBC can help – it can use general purpose text-processing methods thanks to
SIP’s text-based nature. Particularly the following actions are available:

• Remove Header: Remove-header removes all occurrences of a header-field identified by its case-insensitive
name from all requests and responses in a session. Exceptions apply: mandatory header-fields are not
removed: Call-ID, From, To, CSeq, Via, Route, Record-Route and Contact. If a header-field with compact
name form occurs, both forms must be removed explicitly. Newly added header-fields are not removed by
this action.

• Set Header Blacklist: is a convenience function removing multiple header fields by a single action. It
takes comma-separated list of header-field names as parameter and achieves the same effect as if you used
multiple occurrences of the Remove-Header action. Blacklists are applied one by one in the order in which

6.8. SIP Mediation 112

sip:\protect \T1\textdollar rU@targetgw.com

FRAFOS ABC SBC Handbook, Release 5.3

they appeared in the rules and are executed after applying both A and C rules. Blacklists can be a nice
short-cut for removing a header-field which has both normal and compact name. For example, you may
want to configure deletion of both forms of the Subject header field by using

Set-Header-Blacklist("Subject,s")

• Set Header Whitelist: is an even more aggressive convenience function for removing multiple header
fields. If used, all but mandatory and whitelisted header fields are removed from all requests and responses
belonging to a session. The action is applied after processing of both A and C rules completes.

• Add Header: adds a new arbitrary header-field to a dialog-initiating request. This action only applies to
the first request of a session. Its greatest power comes from the ability to craft complex header-fields using
the substitution expressions.

SIP Header Modification Examples

Let us show the power of these actions on an example. A real-world case is translation of identity between the pre-
standard Remote-Party-ID header field, still used by some SIP equipment, and the standardized Asserted Identity,
see RFC 3325. Both fulfill the same purpose, yet differ in their syntax which needs to be translated from one form
into the other.

The pre-standard header-field looks like this

Remote-Party-Id: "Mr. X" <sip:+1-404-1234-000@sipsip.com>;privacy=full

The standard form looks like this

P-Asserted Identity: "Mr. X" <sip:+1-404-1234-000@sipsip.com>

The simplest way for translation is

• finding out if there is an occurrence of Remote-Party-Id header-field by a rule with condition

if Header(Remote-Party-Id) does not match RE ^$"

• removing the header field by action

Remove-Header(Remove-Party-Id)

• and eventually forming the newly crafted header field using the URI in the previous header-field by

Add-Header(P-asserted-identity: $Hu(remote-party-id)"

Note that while this example mostly works, it ignores some parameter details for sake of brevity.

It is important to keep in mind that mediation changes have impact on subsequent SIP processing: replacement
expressions and header-field tests in condition consider the changed value.

The following example rules change request URI and From URI.

Fig. 23: Impact of Mediation Changes on Subsequent Processing

6.8. SIP Mediation 113

https://tools.ietf.org/html/rfc3325.html

FRAFOS ABC SBC Handbook, Release 5.3

Substitution expressions in the Add Header Action print the request URI and From URI in a troubleshooting
header-field named x-after-change. Because they refer to the **current* value, the new URIs appear in the outgo-
ing INVITE regardless what they included originally. Similarly, the header-field value condition that tests if the
From URI has assumed the new value prints YES in another troubleshooting header-field name x-from-is-new:

INVITE sip:new@ruri.com SIP/2.0.
Via: SIP/2.0/UDP 192.168.0.84;branch=z9hG4bKtwvtoaKk;rport.
From: <sip:new@from.com>;tag=170A7805-533943A10009B434-D85F9700.
To: <sip:uritest@abcsbc.com>.
CSeq: 10 INVITE.
Call-ID: 77443978-533943A10009B47B-D85F9700.
User-Agent: Blink Lite 3.1.1 (MacOSX).
x-after-change: RDOT sip:new@ruri.com FU new@from.com.
x-from-is-new: YES.
....

Option tags

Option tags are unique identifiers used to designate extensions in SIP. These tags are used in Require and Supported
header fields.

To simplify manipulation with these headers ABC SBC offers since version 4.5 following conditions:

• Supported header: allows to check whether an extension is (is not) present in Supported header field.

• Require header: allows to check whether an extension is (is not) present in Require header field.

and actions:

• Update Supported header: allows to add option tags (Add tags) or remove them (Remove tags) from
Supported header field or overwrite them completely (Set tags)

• Update Require header: allows to add option tags (Add tags) or remove them (Remove tags) from Require
header field or overwrite them completely (Set tags)

6.8.5 Early Media, Ring Back Tone and Forking

In SIP, so called “early media” and “forking” are quite complex SIP features which make interoperability some-
times a challenge, especially when occurring together.

Early media appeared in the SIP protocol as a PSTN backwards-compatibility feature. In PSTN the difference
between early media like “please wait your call is important to us” and the actual call is simple: the latter is
charged for, the former is not. This is by the way the reason, why “early media” is sometimes humorously referred
to as “late charging”. Early media appear often when the called party is a PSTN gateway. The same protocol
vehicle is often also used to implement “ring back tone”. The protocol flow is rather simple: The callee sends a
provisional response with a reply code equal to 180 or 183 including an SDP answer and starts sending RTP with
the ring back tone to the caller. Usually, the caller User Agent only starts rendering the ring back tone to the user
when this response is received. The protocol usage examples and details are well described in the RFC 3960.

Forking is a feature anchored in the SIP specification RFC 3261. It permits SIP proxy servers to forward one
incoming requests to multiple different destinations. For example, one can setup this way all his phones to ring
in parallel: soft-phone, hard-phone, smart-phone and even a PSTN phone behind a PSTN gateway. Forking can
occur in parallel or in series. If serial forking is used, a forking proxy following best current practices sends a 181
inbetween. The “forked” INVITE requests may look almost identical but each of them always must have a unique
“branch” identifier in the topmost Via header field.

Various unpredictable situations appear when forking and early media appears at the same time. For example two
PSTN gateways send both early media to the caller. To deal with such situations the ABC SBC does only accept
the first early media stream and discards the subsequently received ones.

The actions described in this Section help to customize the behavior of the ABC SBC to some special cases.

6.8. SIP Mediation 114

https://tools.ietf.org/html/rfc3960.html
https://tools.ietf.org/html/rfc3261.html

FRAFOS ABC SBC Handbook, Release 5.3

The action Drop SDP from 1xx replies drops SDP payload from all listed 1xx SIP answers. The action takes
as parameter a comma-separated list of reply codes. SDP payloads are dropped from all responses with any of
these codes. This action is especially useful if specific replies should be handled, for example a locally generated
ring back tone should be preferred to a ring back tone from the far end. Note that the RTP relay is not started
if all provisional response are dropped, i.e. a provisional response needs to be processed for the RTP relay to be
initialized, also for relaying early media.

Fig. 24: Drop SDP from reply

Another action Drop early media drops the RTP packets of early media, that is until the call is established.
Note that if early media shall be dropped from signaling entirely, the actions “Drop SDP from 1xx replies” in
combination with “Translate reply code” 183->180 must be used.

Fig. 25: Drop early media

Support serial-forking proxy: This action allows to reset early media when a downstream SIP proxy server
indicates by a 181 response that it has chosen to try some other destination for the call. By default, only the
first early media arriving to the SBC is permitted, all other early media is dropped. This strict policy assures that
downstream SIP forking cannot create multiple early media streams mutually interfering with each other. With
this option, one can make an exception to the rule and permit early media coming later to override the previously
established early dialog. It works safely as long as there is no parallel early media and 181 indicates that a later
early media stream legitimately replaces the previous stream.

The following SIP flow-chart from Section 2.9 of RFC 5359 show a situation in which a SIP proxy generates a
181

Alice Proxy User B1 User B2
INVITE F1		
--------------->	INVITE F2	
(100 Trying) F3	------------->	
<---------------	180 Ringing F4	
180 Ringing F5	<-------------	
<---------------		
Request Timeout		
	CANCEL F6	
	------------->	
	200 OK F7	
	<-------------	
	487 F8	
	<-------------	
	ACK F9	
	------------->	
(181 Call is Being Forwarded) F10		
<---------------		INVITE F11
	--------------------------------->	
		180 Ringing F12
180 Ringing F13	<---------------------------------	
<---------------		200 OK F14
	<---------------------------------	
200 OK F15		
<---------------		
ACK F16		

(continues on next page)

6.8. SIP Mediation 115

https://tools.ietf.org/html/rfc5359.html

FRAFOS ABC SBC Handbook, Release 5.3

(continued from previous page)

|--------------->| | ACK F17 |
| |--------------------------------->|
| Both way RTP Established |
|<===>|
BYE F18		
--------------->		BYE F19
	--------------------------------->	
		200 OK F20
200 OK F21	<---------------------------------	
<---------------		

The action Fork allows to add a new branch to a processed request and start forking. Multiple occurrences of
the action result in multiple branches of the request. The action takes only one parameter, the request URI of the
forked request. The parameter can use replacement expressions, however if an invalid SIP URI is formed the call
will fail.

Fig. 26: Forking

6.8.6 Call transfers

Using the action Call transfer handling it can be configured how in-dialog REFER requests are handled in the
ABC SBC. The configuration is per call leg, i.e. if used in inbound (A) rules REFER handling is set for the A leg,
if used in outbound (C) rules it is set for the B leg.

Following methods of REFER handling can be used:

• pass-through

Pass REFER through the ABC SBC to the remote peer (default).

• reject

Reject the REFER request with a 403 Forbidden reply.

• handle internally

In case of an attended call transfer to another call established through the ABC SBC (REFER with
Replaces in Refer-To pointing to a local call) the call legs are connected locally. Only offer-answer
exchanges (re-INVITEs) that synchronize session description on both ends are generated.

In case of an unattended call transfer (no Replaces in Refer-To) the ABC SBC generates a new IN-
VITE to the requested destination. This INVITE can be handled in routing (B) rules and outbound (C) rules
similarly to regular calls. For detection of such locally generated calls the condition Request source can be
used.

In case of an attended call transfer to a non-local call (Replaces in Refer-To refers to a non-existent
call leg) the ABC SBC generates a new INVITE with Replaces to the requested destination. This INVITE
can be handled the same way as an INVITE generated for an unattended call transfer mentioned above.

Limitations:

• only in-dialog REFER requests are handled

• attended call transfer is not possible with transparent call IDs

6.8. SIP Mediation 116

FRAFOS ABC SBC Handbook, Release 5.3

6.8.7 INVITE with Replaces handling

ABC SBC is able to handle INVITE with Replaces header locally, if the Replaces header points to a call estab-
lished on the SBC.

The action Handle INVITE with Replaces header is used for this purpose - it activates local INVITE with
Replaces handling.

Limitations:

• INVITE with Replaces can not be handled when replacing call with transparent call IDs

6.8.8 Mapping Dialog-IDs in INVITEs with Replaces

If an INVITE with Replaces passes the ABC SBC, and the call to be replaced is also traversing the SBC, with
transparent call IDs not enabled the Dialog Identifiers in the Replaces header refer to the call leg on the side before
the SBC, but do not have a meaning after the SBC.

Using the Map Replaces header action, the dialog identifiers are replaced with the corresponding ones on the other
side of the SBC so that the Replaces still is valid.

6.8.9 Other mediation actions

The ABC SBC supports various actions related to SIP processing:

• Enable transparent dialog IDs

– Use the same dialog identifiers (Call-ID, From-tag, To-tag) on both sides of a call (e.g., for the incom-
ing and out going messages). If this action is not enabled, the FRAFOS ABC SBC changes dialog
identifiers. Unchanged Call-ID may be a security concern because it may contain the caller’s IP ad-
dress. However, transparent identifiers make troubleshooting and correlation of call legs much easier.
Also, for call transfers using REFER with Replaces as used in call transfer scenarios to work through
the SBC, transparent dialog IDs need to be enabled.

– Transparent dialog IDs should be avoided unless absolutely necessary. It is known to break unattended
call transfers with “call transfer handling” action.

• Forward Via-HFs

– This option makes the SBC keep all Via headers while forwarding the request. This behavior mimics
what a proxy would do, especially in combination with the Enable transparent dialog IDs action (the
only remaining difference to a proxy is the non-transparent Contact header field). Note that forwarding
the Via headers exposes the IP addresses of entities on the incoming leg side of the request.

• Translate reply code

– Change SIP response code and reason for all SIP responses with a specific code. Note that changing
responses between SIP reply classes may seriously break proper operation.

– Parameters: SIP response code to change, SIP code and reason phrase to use for the reply sent out.

• Allow unsolicited NOTIFYs

– The ABC SBC keeps track of subscriptions and usually only lets NOTIFY messages through if a
subscription for it has been created before (through a SUBSCRIBE or a REFER). This action tells the
SBC to let pass NOTIFY messages even if no subscription has been created before.

• Relay DTMF as AVT RTP packets (RFC4733/RFC2833)

– relays DTMF tones as RTP avt-tones packets (RFC 4733/RFC 2833)

– Parameters: none

• Relay DTMF as SIP INFO

– relays DTMF tones as proprietary SIP INFO payload

6.8. SIP Mediation 117

https://tools.ietf.org/html/rfc4733.html
https://tools.ietf.org/html/rfc2833.html

FRAFOS ABC SBC Handbook, Release 5.3

– Parameters: none

• Diversion to History-Info

– converts SIP diversion header-field (RFC 5806) into the History-Info header-field (RFC 4244) using
the guidelines set in RFC 6044.

– Parameters: none

• Set Max Forwards

– sets the value of Max-Forwards header field in forwarded SIP requests to the configured value. This
limits the number of hops a request can be forwarded until it is bounced back. It may make sense to set
it to a lower value than RFC 3261 recommends (70). If this action is not used, the value in incoming
request is decremented by one before forwarding.

– Parameters: number of hops.

• Set Content Type whitelists and Set Content Type blacklists

– limits SIP content types to well known payload types (whitelists) or to all but specifically prohibited
payload types (blacklists). Most VoIP SIP requests include the type of application/sdp.

– Parameters: comma-separated list of content-types

• Add dialog contact parameter

– Allows to add a parameter to the contact URI generated by the SBC.

– Parameters: The side of the call (caller/A leg, callee/B leg) can be specified, the parameter name and
value.

• Set Contact-HF parameter whitelists and Set Contact-HF parameter blacklists

– defines which Contact HF parameters are forwarded through the ABC SBC . By default no parameters
are forwarded. With whitelisting, only specified parameters are forwarded. With blacklisting, all but
specified parameters are forwarded.

– Parameters: comma-separated list of Contact parameter names

• Forward Contact-HF parameters

– makes sure all Contact HF parameters are forwarded as received in incoming request. If no action is
used, no parameters are forwarded at all.

– Parameters: none

• Call transfer handling

– The actions defines in which mode incoming REFERs will be processed. They are either rejected,
forwarded or handled locally.

– Parameters: REFER-processing mode

6.9 SDP Mediation

SDP mediation allows to manipulate how applications codecs will be selected during session negotiation.

6.9. SDP Mediation 118

https://tools.ietf.org/html/rfc5806.html
https://tools.ietf.org/html/rfc4244.html
https://tools.ietf.org/html/rfc6044.html
https://tools.ietf.org/html/rfc3261.html

FRAFOS ABC SBC Handbook, Release 5.3

6.9.1 Codec Signaling

In SIP call parties are free to negotiate their capabilities using the offer-answer model, see RFC 3264: The caller
offers its capabilities such as supported codecs and the caller party matches those against its own. In some cases it
may be reasonable to restrict the list of offered codecs. Mostly, this is done when there are bandwidth constraints.

If media anchoring is used, every single media stream enters and leaves the SBC. With the most common but
“hungry” codec G.711, it means 172 kbps x 2 in each direction, which corresponds to a maximum of about five
thousand calls on a gigabit link (the actual limit is in fact even lower due to packet rate constraints).

G.729 is probably the most widely used codec with lower bandwidth consumption. The bit rate for G.729 yields
62 kbps in each direction (the rate includes UDP, IP and Ethernet overhead).

For mobile clients, bandwidth hungry codecs with large packet size like G.711 can pose additional problems: Due
to longer use of the wireless interface, battery life is reduced, and also the packet loss rate is greatly increased with
the bigger packet sizes. On the other hand, CPU intensive codecs may also strain the battery on mobile clients if
they are not implemented in hardware.

For these reasons, the ABC SBC offers you these functions

• setting codec preferences (Set codec preference action). Specifies in descending order which codecs of-
fered in SDP payload should be “picked”.

• transcoding (Enable transcoding action) – allows to convert sender’s media from encoding the received
does not support to encoding he does. See more in Section Transcoding.

• codec white/blacklisting (Set codec whitelist and Set codec blacklist actions) explicitly specifies which
codecs are permitted or not.

In order to save bandwidth and improve battery life and call quality, to mobile clients G.711 should not be used
by using a Set codec blacklist action with “PCMU,PCMA” as blacklisted codecs.

Another example is emergency calls (911), where due to call quality concerns G.711 is the mandatory codec. If,
for bandwidth saving reasons, the G.711 codec is usually blacklisted, it should be whitelisted for calls sent to an
emergency gateway.

If codec restrictions result in a failure to find a common codec, the ABC SBC offers you to use built-in software
based transcoding to increase interoperability.

Please refer to the Media processing section, see Sec. Media Handling for a complete reference of functionality
the ABC SBC offers to restrict the set of used codecs, give certain codecs a preference or transcode between
codecs.

6.9.2 Media Type Filtering

For an audio call, the media type in the SDP is “audio”. For a normal video call with audio, the two media types
“audio” and “video” are negotiated, for other types of calls (“image”, screen sharing etc), other media types are
possible.

Media types may be filtered using the actions

• Set media blacklist - remove all blacklisted media types from SDP

• Set media whitelist - remove all but whitelisted media types from SDP

The media blacklist/whitelist actions have as parameters a comma-separated list of media types (audio, video,
image, . . .) to be blacklisted. It is applied to all SDP messages exchanged at any time during the call. In the case
that after applying the action no media type is left in the SDP message then the request will be rejected with a
response message 488.

Example: Allow only audio payload to pass and prevent video streams to be negotiated; for the User Agents it
will appear as if the other side does only support audio.

6.9. SDP Mediation 119

https://tools.ietf.org/html/rfc3264.html

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 27: Remove video streams

Example: Let audio and audio/video calls through.

Fig. 28: Allow only audio and video

Example: Remove “image” media type.

Fig. 29: Do not allow exchange of images

6.9.3 CODEC Filtering

The actual audio or video content of a call can be encoded with different codecs, which have each different
properties regarding:

• audio or picture quality

• bandwidth consumed

• latency introduced

• processing power required

• resilience regarding packet loss

For example, the G.711 codec has “toll quality” (audio quality roughly equivalent to PSTN, 8khz sampling
rate/narrowband) at 64kbit/s (roughly 80 kbit/s including headers in each direction), introduces low latency, re-
quires little processing but is not resilient against quality degradation with packet loss. The G.729 codec has a bit
less than “toll quality” at 8kbit/s, 6.4kbit/s or 11.8 kbit/s (depending on the used annexes) with modest latency
introduced, some processing power required, and some resilience against packet loss.

In order for two endpoints to successfully establish a call, both endpoints need to support the same codecs. The
codecs actually used in a call are negotiated using the SDP protocol and the SDP offer/answer method to the
subset of codecs supported by both endpoints, and thus it is usually best to let the endpoints negotiate with the
most options possible.

If for some reasons codecs need to be filtered, the actions

• Set CODEC whitelist - remove all but whitelisted media types from SDP

• Set CODEC blacklist - remove all blacklisted media types from SDP

6.9. SDP Mediation 120

FRAFOS ABC SBC Handbook, Release 5.3

are used. Each of these actions takes a comma-separated list of codecs to white- or blacklist, which must be the
names of the codecs as they are used in SDP1 . Codec names are case-insensitive, a blacklist of “g729,ilbc” is
equivalent to “G729,ILBC”. In the case that after applying the action no codecs are left in the SDP message then
the request will be rejected with a response message 488.

Fig. 30: Setting a whitelist

Fig. 31: Setting a blacklist

All of the white- and blacklists applied for a call are executed one after another. For example, if one action sets
the whitelist “PCMU,PCMA,speex” and another action sets the whitelist “PCMA,G729”, it would result in only
PCMA (G.711 A-law) be let through for the call.

The codec white and blacklists are applied on both legs, the incoming and the outgoing call legs, and on all SDP
messages going in both directions (from caller to callee and from callee to caller) at any time during the call.

6.9.4 CODEC Preference

Codec negotiation in a SIP call usually works this way

• the offerer (the caller in calls with normal SDP offer-answer negotiation; the callee in calls with delayed
SDP offer-answer negotiation) lists the supported codecs for a call in preferred order, so the first codec in
the SDP is the codec preferred by the offerer

• the other party (the answerer) selects from this list the subset of codecs that it supports, and orders it
according to its preference or local policy, it may for example accept the order that the offerer asked for

• both parties encode and send media with the codecs that are in this subset, and usually the first codec in the
answer is used, but (even without re-negotiation) any party may switch in-call to any codec in this subset

Because the User Agents usually respect the codec preference of the other side, the operator may influence the
codec actually used for a call in the SBC by reordering the codecs as they are listed in the SDPs. Codec preferences
may be influenced in order to

• improve audio quality by preferring better performing codecs

• save bandwidth

• save processing power on the User Agents, e.g. especially if mobile/battery powered devices are used

The Set CODEC preferences action has as parameters two comma-separated lists of codecs, for the A (caller) leg
and the B (callee) leg respectively. An entry may have the specific sample rate appended separated with a slash,
e.g. speex/32000, speex/16000, speex/8000

1 e.g. PCMU for G.711 u-law, PCMA for G.711 A-law. See http://www.iana.org/assignments/rtp-parameters and the IETF payload type
specifications (RFCs) for the used names of the codecs.

6.9. SDP Mediation 121

http://www.iana.org/assignments/rtp-parameters

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 32: Setting the codec preferences

Any codecs in this list found in the SDP messages exchanged in either direction are prioritized in the order listed,
by placing them at the beginning of the codec list in the SDP document. It is a good practice to configure the same
order for both legs.

Fig. 33: Example: Prefer bandwidth-saving codecs (codecs that compress more): G.729,iLBC,speex,G.726

Fig. 34: Example: Prefer codecs with high audio quality: OPUS,SILK,speex/32000,speex/16000,G.722,AMR-
WB

Additionally codec attributes offered in SDP can be filtered out using actions Set SDP attribute whitelist and Set
SDP attribute blacklist.

6.9.5 SDP Bandwidth attribute limiting

The SDP may contain a (session-level, or media-level) b=<modifier>:<value> attribute, which sets the bandwidth
to be used (see RFC4566). Different types of bandwidth signaling are standardized, denoted by different modi-
fiers; the most common being TIAS (RFC3890), AS (application specific, RFC4566) and CT (conference total,
RFC4566). The action Set SDP bandwidth limit can be used to limit the signaled bandwidth: If there is a band-
width attribute for the specified type, it will be set to the limit if it is signaled to be more than the limit. If there is
no bandwidth attribute for the specified type, one will be added.

Especially when the actual RTP bandwidth available to a call is limited using the action Limit Bandwidth per
call (kbps), using this action the SBC can signal the maximum available bandwidth to the endpoints.

If ‘Media type’ is not set, this action sets the session-level bandwidth attribute. If ‘Media type’ is set, it sets the
media-level bandwidth attribute for that media type. E.g., if ‘video’ is set as Media type, then all m-lines with type
‘video’ will have a properly limited bandwidth attribute. ‘Media type’ can be set to only a single media type value
(i.e. ‘video’ or ‘audio’), no list can be given here (i.e. ‘video, audio’ is wrong); if multiple media types should be
limited, multiple actions must be used.

6.9. SDP Mediation 122

FRAFOS ABC SBC Handbook, Release 5.3

6.10 Media Handling

6.10.1 Introduction

In SIP networks, the signaling and media packets may traverse different paths and may be handled by different
servers in the path. The ABC SBC can be on both the signaling path and the media path, or only on the signaling
path of a call.

In the SIP signaling, the IP addresses between which the actual media is exchanged is negotiated using Session
Description Protocol (SDP). The default signaling mode establishes a direct media path between the two call
parties as shown in Chart I of Figure RTP Anchoring with and without Symmetric Mode. If the ABC SBC is
configured to intervene and insert itself in the media path, it replaces IP addresses in SDP signaling with its own,
attracts RTP packets to itself and forwards them to the other call party, as shown in Chart I and II.

Fig. 35: RTP Anchoring with and without Symmetric Mode

Generally it is desirable to have RTP processed and relayed at as few network elements as possible, in order to
maintain lowest possible total latency and delay variations (jitter). Performance impact of media relay is discussed
in more detail in Section SBC Dimensioning and Performance Tuning. However, the ABC SBC must be inserted
in the media path in the following quite common situations:

• NAT handling - User Agents that are behind a NAT are not able to send RTP directly to other User Agents
behind NAT

• Connecting unroutable networks – when the ABC SBC connects networks that cannot directly send pack-
ets between themselves, media anchoring must be enabled.

• Topology hiding - to improve end point and network security, the ABC SBC prevents entities from learning
the addresses of other entities in the network

• Bandwidth limitations - the ABC SBC can limit the bandwidth used by one call to the amount that is
necessary in order to prevent denial of service attacks, see Sec. Traffic Limiting and Shaping for more
details.

• Traffic monitoring - the ABC SBC can be used to monitor the amount of media traffic used

• RTP filtering - the ABC SBC can filter unknown or not negotiated RTP packets

• Logging and tracing - for troubleshooting call audio quality issues, the ABC SBC can be used to get a
trace of the traffic including RTP packets

• Recording for sake of monitoring, archival or lawful interception - in any of these case the operator must
relay RTP packets in order to record the audio.

6.10. Media Handling 123

FRAFOS ABC SBC Handbook, Release 5.3

• Quality assurance - especially when protecting a hosted PBX service it is often needed to record incoming
calls. To support this feature, an RTP anchoring is needed.

• WebRTC gateway - in this mode the ABC SBC must receive the media flows to be able to convert them
between plain RTP and secured DTLS-SRTP.

6.10.2 Media Anchoring (RTP Relay)

Media anchoring is activated by applying the Enable RTP anchoring action on a call in the A or C rules of
either source or destination Call Agent or Realm. This action may be activated several times on a call, however,
once activated it can not be deactivated for that call. Executing this action is a prerequisite for many other actions
described in this section, they will otherwise not work properly.

Fig. 36: Media anchoring configuration

The following sub-sections described in more detail respective configuration options of media anchoring.

6.10. Media Handling 124

FRAFOS ABC SBC Handbook, Release 5.3

RTP, RTCP and FAX (T.38) Relay

If media anchoring is activated, both RTP and RTCP packets are relayed for a call. Also, Facsimile over RTP and
over UDPTL (T.38) is relayed by the ABC SBC. No configuration step is required, the ABC SBC forwards Fax
automatically.

Symmetric RTP Mode and NATs

For User Agents behind a NAT - especially if both user agent are behind NATs - relaying media through the
ABC SBC may alone not be enough to accomplish NAT traversal. The problem is the ABC SBC cannot easily
determine the public IP address to which to relay RTP media for a SIP phone. The IP address advertised by the
User Agents in their SDP payload is non routable.

In a solution here called “Symmetric RTP”1 (also called Comedia-style2 RTP handling) the ABC SBC ignores IP
address advertised in SDP and learns the IP address and UDP port number of the UA by observing RTP packets
coming from the UA. It then starts sending the reverse RTP stream to that address. Symmetric RTP is activated by
either one of:

• SIP device, by inserting an “a=direction: active” property in the SDP

• ABC SBC, by enforcing it using the “Media far end NAT traversal” option in the “Enable RTP anchoring”
action

We recommend to leave this option turned on for all Call Agents in their both inbound and outbound rules. That
not only works safely in most cases, but is also more secure in that it prevents use of bogus IP addresses in SDP
payloads. Only when a Call Agent is a) known not to be implemented symmetrically AND b) is directly reachable
without NATs in between, it makes sense to turn this option for the Call Agent off.

The RTP flows are depicted in Figure RTP Anchoring with and without Symmetric Mode. The chart I. shows
RTP flows when no media anchoring is engaged. The RTP packets take then the “shortest path” without any SIP
intermediary. This flow fails in presence of NATs because telephone’s private IP address advertised in SDP is not
reachable for the peer device. The chart II shows RTP flows when media anchoring is enabled. The RTP flows
from and to a SIP phone are not symmetric, i.e., they are sent from and to different UDP ports as advertised in
SDP payload. Like in the chart I, NAT traversal will fail. The chart III shows symmetric RTP that is the safest
option for NAT traversal. IP addresses in SDP payload are ignored and the ABC SBC relays media to a telephone
to address from which phone’s RTP packets come.

Note well: it is important to realize that enabling Media far end NAT traversal for UAC will open a security
weakness subjecting the call to a so called RTP Bleed attack. It can be mitigated partially by using the Lock on
addresses learned from RTP option. Forcing usage of Secured RTP will effectively mitigate this attack as the
SRTP packets will be authenticated prior to the address learning step.

Intelligent Relay (Media Path Optimization)

If the ABC SBC handles a call which is originating from the same network that it terminates to, it may be useful to
skip media anchoring for that call, in order to save bandwidth and to reduce the total latency introduced. The ABC
SBC detects that the caller and the callee are behind the same NAT and is so, bypasses media relay. The test is done
by comparing source IP address of incoming INVITE to the intended destination of the request. This algorithm
works only if both User Agents are behind the same NAT and there are no intermediary elements between the NAT
and the ABC SBC. If this condition doesn’t hold, the optimization will fail. That may for example happen if two
user agents from behind different NATs speak to the ABC SBC through an intermediary proxy server and appear
to the ABC SBC as if they were behind the same IP address. Further, this algorithm does not detect UAs behind
a NAT which controls multiple public IPs. Also, the signaling IP address of the callee used for the comparison is
projected and does not support domain names.

1 The name “Symmetric RTP” is derived from the property of a UA that it sends RTP from the address/port combination where it expects
to receive RTP at.

2 The name “Comedia” came from an Internet Draft proposing use of “Connection Oriented Media”. The Internet draft draft-ietf-mmusic-
sdp-comedia became eventually RFC 4145.

6.10. Media Handling 125

https://tools.ietf.org/html/rfc4145.html

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 37: Intelligent relay

A separate header field, the “Source-IP header field”, is used to transport the information about the caller’s network
through additional proxies in the signaling path. The header name may be configured as a property of the “Enable
RTP anchoring” action, so that it can be customized and subsequently filtered out if necessary. This way, the ABC
SBC can perform the “same-NAT” test even in scenario shown in Figure Intelligent relay and which a call passes
the ABC SBC twice. Once on the way in, when source IP address is known but not the final destination , and then
on the way out where the destination is already known but the source IP address would be unknown without the
additional header-field.

Advanced Anchoring Options

Further media-anchoring options are useful for interaction with advanced clients that use newer protocols: ICE
and STUN for NAT traversal, and also additional RTCP feedback for measuring QoS. Such clients are yet rare,
however a new interoperability profile for WebRTC clients does actually include all of these. See also Section
SIP-WebRTC Gateway. Other group of options are those related to keeping calls alive: they make sure that the
ABC SBC and its communication peers will properly detect active calls as such, and timely detect calls that ended
abruptly.

The following advances options are available:

• Offer ICE-Lite – adds ICE-lite (server-side ICE) capability to SDP. This is a must for WebRTC clients that
expect their peers to communicate using ICE. WebRTC Call Agents must thus have this option enabled in
both A and C rules. It can be also useful for SIP-based User Agents if they support ICE – however generic
ABC SBC NAT techniques do not require use of ICE for facilitating NAT traversal.

• Offer RTCP Feedback – adds additional RTCP capabilities for sake of finer QoS monitoring than available
in traditional RTP implementations. This is mostly useful for WebRTC implementations which include this
extension in their interoperability profile.

• Keepalives – allows to send keep-alive RTP traffic. This is useful if one side of a call detects and discontinues
inactive calls whereas the other side suppresses RTP due to Voice Inactivity Detection or On Hold scenarios.
With this option turned on, the calls will not be discontinued.

6.10. Media Handling 126

FRAFOS ABC SBC Handbook, Release 5.3

• Timeout – allows call termination when no RTP traffic appears. Useful to eliminate “hanging calls” due to
abruptly disconnected SIP devices.

6.10.3 RTP and SRTP Interworking

The ABC SBC can also transform media between “plain-text” RTP and encrypted SRTP. This is particularly useful
in SIP/WebRTC interworking scenarios detailed in Section SIP-WebRTC Gateway.

The action Force RTP/SRTP performs protocol admission in A-rules and protocol conversion in C-rules. When
placed in A-rules, it only permits calls corresponding to the requested protocol, the calls will be rejected otherwise.
When the action is placed in C-rules, it converts media to the chosen protocol. If the chosen protocol is SRTP,
the keying protocol must be also chosen: DTLS or SDES. When the destination is a WebRTC client, the keying
protocol must be DTLS since spring 2014.

SRTP with RTP fallback (“SRTP fallback to nonsecure RTP”) is a method of optional SRTP (opportunistic encryp-
tion) where the offerer sends an SRTP offer, but the answerer can fall back to RTP in case SRTP is not supported.
This means that, contrary to SDP offer-answer requirements of RFC3264, the transport of the answer can be dif-
ferent to the offer: it can be RTP/AVP(F) when the offer is RTP/SAVP(F). This Cisco-specific method also adds a
Supported tag “X-cisco-srtp-fallback”. Whether SRTP or RTP is used can be renegotiated at every Offer-Answer
exchange (e.g. re-Invite). This fallback method does not try to re-negotiate non-secure RTP if a 488 is received.

Fig. 38: Enforce SRTP

6.10.4 SRTP End to End encryption

The action End to End encryption provides the capabilities to stay in the media path while not interfering in the
SRTP negotiation. The SRTP key is negotiated by both peers without any intervention of the SBC, which is not
able to encrypt/decrypt the media if this action is enabled. The RTP or SRTP packets are then just relayed as-is.

6.10.5 Transcoding

To enable broader interoperability, the ABC SBC can transcode between different codecs, that is it will decode in-
coming RTP packets and encode RTP packets into a different codec. The ABC SBC currently supports transcoding
for audio only, there is currently no support for transcoding video streams.

For transcoding to be available in the ABC SBC, the operator needs to get and install the proper license for the
media processing package, see Sec. Installation Procedure for details. Also, for some codecs, patent licenses
need to be acquired separately. For some codecs, special software packages need to be installed, please contact
FRAFOS support if in doubt.

6.10. Media Handling 127

FRAFOS ABC SBC Handbook, Release 5.3

The FRAFOS ABC SBC supports software based transcoding. Transcoding adds non-negligible processing power
requirements to the SBC hardware, see Sec. SBC Dimensioning and Performance Tuning for details.

Depending on the codecs used, transcoding also reduces voice fidelity, especially if transcoding is applied a
multiple times on the path of the call.

The action Activate transcoding takes as parameter a comma-separated list of codecs which are added to the
SDP offer, if not present in the original offer. The codecs listed here must be supported by the ABC SBC . If the
other party accepts one of these, the media stream is transcoded. Both (or, all) codecs which the ABC SBC should
transcode between need to be added to the list of transcoding codecs.

Fig. 39: Activate transcoding

For example, if “PCMU,PCMA” is configured as transcoding codecs, and the caller offers only PCMU and the
called party PCMA, the ABC SBC transcodes from PCMU at one side to PCMA at the other side and the other
way around. If both sides happen to support the same set of codecs then transcoding will not be needed and will
not be used.

6.10.6 Audio Recording

Recording may be useful for a variety of purposes: most often for archival, monitoring and legal interception. If
a call is selected for recording, the ABC SBC collects audio and stores it in a WAV file. Each direction is stored
in one channel, the file is stored with sampling rate 8kHz, two bytes per sample (PCM), two channels. To allow
recording, media anchoring must be turned on. Recording works only if supported codecs are used.

Recording is activated by the action Activate audio recording that takes a comma-separated destinations as param-
eter.

The destination may be a filename, a HTTP server to which the WAV file is uploaded using the PUT method or a
SIP URI if the call recording is to be outsourced to a SIPREC call recording server. If a SIP URI is used, only one
is supported and should not be entered as a list.

The call recording action supports two more parameters allowing for start and stop announcements. These an-
nouncements are played when the recording starts or stops. Please note that the stop announcements can only be
played if SIPREC is used, and the call recording server (SRS) does stop the recording before the call has been
ended.

Replacement expressions can be used to provide easier identification of the system. USE CAUTION when de-
vising the filename: filename conflicts will result in different sessions overwriting each other’s WAV file. If no
filename is included, the ABC SBC uses its own ephemeral filename. Filenames are made relative to the directory
/data/recordings to make sure that the recording doesn’t interfere with the filesystem.

Fig. 40: Activate Audio Recording

6.10. Media Handling 128

FRAFOS ABC SBC Handbook, Release 5.3

When recording and generating the WAV files completes, an event is produced.

Note that to avoid premature deletion of important archival data, the system does not delete any audio files and
keeps them stored. This may potentially exhaust the disk space. Consult professional services if you need help on
managing audio archives.

SIPREC specific options

When a SIPREC is used for audio recording, a set of specific options can be configured.

Fig. 41: SIPREC options

The fields related to caller and callee determine the values transmitted to the recording server within the SIPREC
metadata. The Caller & Callee URIs are used to set the participants’ nameID aor tags, while Caller/Callee
display names are used to set the name tags.

The field “Additional header fields” can be used to add header(s) to the SIP INVITE message sent to the SIPREC
server.

The last option “Do not start yet” allows to delay the start announcement until the SIPREC server signals it
has started the recording. This allows for notifying the user properly. Please note that the media streams are
transmitted during the complete call to the recording server, even if this feature is used.

Since ABC SBC 4.5 it is possible to configure SIP timers towards SIPREC server. With appropriate values this
may help to speed up error detection. See SEMS Parameters for configurable options.

6.10. Media Handling 129

FRAFOS ABC SBC Handbook, Release 5.3

6.10.7 Playing Audio Announcements

Often it is practical to inform caller about an error by an audio announcement rather than a numerical SIP code.
The ABC SBC can play audio files on several different occasions for each of which there is an appropriate action:

• “Refuse call with audio prompt” plays an audio file immediately on receipt of an INVITE

• “Play Prompt on Final Response” plays an audio file on an unsuccessful call attempts

• “Generate Ring-Back Tone” plays an audio file instead of the default ringing tone

• “Activate Music On Hold” plays an audio file when a party chooses to put a call on hold

The action “Refuse call with audio prompt” plays a prerecorded audio WAV file immediately on receipt of a SIP
INVITE. It is typically used to decline a call using a pre-recorded message. This action plays a prerecorded WAV
audio file and terminates the call. It takes the following parameters:

• filename of the announcement relative to the global configuration option “Prompts/Base Directory”. The
filename must refer to an existing file which has been uploaded to the prompts directory by administrator.

• a checkbox specifying whether the announcement shall be played as early media or establish a regular call

• a checkbox specifying whether the announcement shall be played once or in a loop

• SIP response code, phrase and header-fields to be used for terminating early media announcement (unused
if a regular call is established)

• also instead of playing a pre-recorded WAV file, a beep tone can be generated. To turn it on, activate the
“generate ringtone” checkbox and describe the tone length, on-off periods and frequencies.

Fig. 42: Example Action for Playing an Announcement

The same effect can be achieved for SIP calls that failed downstream. The action Play Prompt on Final Re-
sponse plays an announcement for call attempts that failed downstream due to one of the listed failure codes. The
announcement can be played as a regular call or as early media, in which case a specified SIP response code will
conclude the announcement.

Fig. 43: Example Action for Playing an Announcement on Receipt of a 404 Response

Also it may be useful to play specific tones or audio when called party’s telephone is ringing. To enable this
functionality, use the action “Generate Ring-Back Tone” and either define a tone or reference to an audio file to
be played instead of the default ringing tone. The screenshot in Figure Example Action for Playing an Audio File
during Ringing is showing such a configuration that plays a predefined audio file during the ringing phase after
the receipt of the UAS’s 180 response. Alternatively one could have played a predefined dual-frequency tone.

6.10. Media Handling 130

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 44: Example Action for Playing an Audio File during Ringing

Similarly it is possible to play an audio file whenever a party chooses to put a call on hold. The action takes several
parameters that allow it to define how the on-hold status is signaled to the other call party and if the audio file is
played once or in a loop.

Fig. 45: Example Action to Activate an Audio File when a Call is Put on Hold

6.10.8 Onboard Conferencing

To accommodate smaller-scale dial-in conferences without need for an external conference bridge, the ABC SBC
can mix audio calls. To enable a conference, place a “join meet-me conference” action in A rules. The action’s
parameters allow to specify which conference an incoming call shall join: either by two-stage DTMF dialing, or
by a “hard-wired” conference ID, or by conference ID determined using a replacement expression.

If the room is entered via keypad (DTMF), then some more parameters control how that is done: A minimal length
of the room can be set, and also some unacceptable room numbers (e.g., too simple, can be guessed). Once the
room is entered via the keypad, a prefix can be prepended to it: This way, separate ‘namespaces’ of conference IDs
can be used, e.g. if the same SBC is connected to two different networks which should never share a conference
room, but in both of them the room ID should be entered via the keypad.

The room entered via keypad can also be split at a specific position into room ID and participant ID by using the
“Split room and participant ID” setting. This way, a web interface can send out invitations with individual PINs
and later identify the callers by their participant ID, while the different participants still hear each other in the
room.

The following example configuration shows a conference bridge configured to serve calls from native SIP devices,
SIP-based PSTN gateways and WebRTC browsers. SIP devices and WebRTC browsers are handled the same
way: userpart of request URI ($rU) identifies the conference a caller is joining. Calls from the PSTN call-agents
however are prompted to type in the conference id when dialing in.

6.10. Media Handling 131

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 46: Example Screenshot: Conference Bridge configuration

Note that the default WAV announcement files (like conference ID prompt, or “you’re welcome” message) are
stored on the system in the directory /usr/lib/sems/audio/webconference and can only be changed through Com-
mand Line Interface. For more information, refer to Default Audio Files. Also note that locally processed onboard
conferencing calls do not appear in the list of live calls (see Section Live Calls) in which only relayed calls are
represented.

The status of the conference bridge can be inspected using CLI as shown in the following example

[root@ec2-54-154-137-127 ~]# sems-stats -c "DI webconference listRooms verysecret"
sending 'DI webconference listRooms verysecret\n' to 127.0.0.1:5040
received:
[200, ['1234'], 'Server: Sip Express Media Server (3.1.1-79-c86706a-417e607-87219e5
(x86_64/linux)) calls: 1 active/0 total/0 connect/0 min']
[root@ec2-54-154-137-127 ~]# sems-stats -c "DI webconference roomInfo 1234 4447"
sending 'DI webconference roomInfo 1234 4447\n' to 127.0.0.1:5040
received:
[0, 'OK', [['020D64C4-54E33359000B632C-E54DD700', '"homer" <sip:homer@simpson.org>
→˓',
3, 'direct access: entered', 0, '']],
'Server: Sip Express Media Server (3.1.1-79-c86706a-417e607-87219e5
(x86_64/linux)) calls: 1 active/0 total/0 connect/0 min']
[root@ec2-54-154-137-127 ~]#

6.10. Media Handling 132

FRAFOS ABC SBC Handbook, Release 5.3

Conferencing room pin protected

Conference room may also be protected in a form of a security PIN. That security PIN is asked to each participant
before joining a room.

To use this option, please enable the “Room is PIN protected” option of the “Join meet-me conference” action.
PIN management is subject to 3 possible options :

• First user to join is prompted to set the security PIN. To do so, please enable the “Room is PIN protected”
option and leave the “PIN” field empty.

• PIN is set via action rule. To do so, please enable the “Room is PIN protected” option and set the “PIN”
field to the desired security PIN.

• PIN is set via another action. User may use the “Meet-me conference set PIN” action to set and persist a
security PIN into a specific provisioned table.

In the following scenario, user is required to first set the pin of a room before accessing it. We request the user
dial the 9011234 so the security pin of the room 1234 may be set. He’s then able to dial the 9001234, where he’ll
be prompted for the security PIN of the room 1234 before being able to join.

Please start by creating a provisioned table of type “pins”. Use the “Meet-me conference set PIN” action to set the
PIN of a room and persist that value into the provisioned table. You may then fetch the PIN value from the table
and use it as call variable (see following rules screenshot)

See the following rule configuration as example :

Please note that for this example to work, we’ve created a new CCM’ user “sbcuser” and granted him full actions
on the following permissions: - “Tables: definitions” - “Tables: values”

Multi lingual conferencing announcements

Conference room now support multi lingual prompts! If enabled, user will have the possibility to change the
prompts’ regional for his ongoing call.

The feature is disabled out of the box. To use it, please enable the “Multi- Langague support (MLS)”. Optionally,
one may configure custom regional prompts via the “MLS prompt directories”. Defaults value set English as
primary regional, user have the ability to switch to German by pressing 2.

In the following example, the default regional is set to German, French can be selected by pressing 2, English by
pressing 3.

6.10. Media Handling 133

FRAFOS ABC SBC Handbook, Release 5.3

Note that for this example to work, custom French prompts were manually deployed to the /data/
custom_prompts/fr directory of the ABC SBC container.

Please refer to Default Audio Files for a list of expected prompts.

6.11 NAT Traversal

SIP devices behind Network Address Translators (NATs) cannot reach other SIP devices reliably. The root reason
is SIP protocol advertises SIP device’s IP addresses in several places in the protocol: Contact and Via header fields
SDP c line. These addresses are non routable once they cross a NAT device and break signaling. The ABC SBC
is designed to assist the to facilitate NAT traversal for SIP devices by several techniques: it centers itself in the
middle of communication path, sends signaling and media reversely to where it came from even in violation of
the SIP standard, replaces private IP non routable addresses with its own and keeps all bindings alive.

As depicted in Fig. SBC and NAT traversal, when an INVITE request traverses a NAT then only the IP addresses
in the IP header will be changed. Any IP addresses included in the message itself, e.g., Contact, SDP c line, will
still reference the private IP address of the caller. As the callee would use the information in the Contact header
for replying back to the caller and send media packets to the address in the SDP the call establishment will fail.

6.11. NAT Traversal 134

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 47: SBC and NAT traversal

In the context of NATs, there are basically three different possibilities with respect to the network topology that
will influence the possible measures that can be taken by the ABC SBC to deal with those NATs:

• Far end NAT: This is the most common case in public SIP service scenarios. The SBC is located on the
public Interned and the end-devices access the SBC from behind NATs. The SBC must facilitate the NAT
traversal for the end-devices: it must accomplish RTP traversal, SIP traversal and registration off-load.

• SBC is placed on the NAT:. This is the most common case in enterprise deployments in which the SBC
acts as firewall between a private network with SIP telephones and PBXes, and the outside network. It has
at least one signaling and media interface inside and one outside the NAT. SIP signaling is handled natively
without any additional configuration. However, it is necessary to enable RTP anchoring (relay) so that the
media payload can flow from between the otherwise non routable networks.

• Near end NAT: here, the SBC is placed right behind the NAT and a port forwarding is configured from the
NAT to the SBC. This is considered by the ABC SBC as a special case of the previous configuration. In this
case, it is perfectly sufficient to configure the signaling and media interfaces with the public IP address on
the outside of the NAT. It is also necessary that the configured port range on the media interface corresponds
to the forwarded ports for media transport, as no port translation is supported at this place.

In order to enable users behind a NAT to be reachable the ABC SBC needs to perform the following tasks.

• Detect if a SIP user is behind a NAT. This allows to eliminate expensive NAT traversal facilitation for users
who do not need it. The test is performed by the condition NAT in inbound rules.

• Fix outgoing calls: The ABC SBC must fix SIP INVITEs from users behind NATs so that subsequent SIP
messages coming back will cross the NATs successfully. Particularly, the SBC fixes Contact header-field
and stores NAT information in dialog context. This functionality must be enabled in inbound rules using
the Enable Dialog NAT Handling action.

• Fix incoming calls: The ABC SBC must deliver incoming INVITEs for a user behind a NAT through the
NAT devices. This is only possible if the NAT devices keep the UDP or TCP binding open over which
the user registered. Otherwise the user becomes unreachable once the binding expires. Therefore the ABC
SBC pays great attention to the SIP registration process: It can force more frequent registrations to keep the
bindings alive and it also keeps source address from which the registration came. Subsequent requests for
the registered client are forwarded to the address (as opposed to the private IP address advertised in Contact
header-field). To enable this functionality the actions REGISTER throttling and Enable REGISTER
caching must be applied to REGISTER messages, and the action Retarget R-URI from cache, with the

6.11. NAT Traversal 135

FRAFOS ABC SBC Handbook, Release 5.3

enable NAT handling option turned on must be applied to calls towards the client. See section Registration
Caching and Handling for more details.

• Media anchoring: The ABC SBC redirects RTP stream to itself and sends symmetrically one’s party RTP
media to where the RTP media from the other party came from. This symmetric mode of operation overrides
SIP signaling but works more reliable, because it is better compatible with how most NAT devices work.
The downside of this approach is the extra bandwidth consumption on the ABC SBC and increased RTP
latency. Media anchoring is enabled by the action Enable RTP Anchoring. “Force symmetric option” can
be turned on and off for UACs in inbound and UAS in outbound rules. Media handling and RTP anchoring
ABC SBC is described in more detail in Sec. Media Handling.

In summary the following conditions and actions are used to configure NAT traversal:

• NAT condition - check if the first Via address is or is not behind NAT. This checks if the first Via address is
the same as the IP address that the SIP message was received from.

• Enable dialog NAT handling action - force all subsequent in-dialog messages to be sent to IP/port from
which the dialog-initiating request came.

• Enable RTP anchoring action - force RTP from a SIP user to be sent through the ABC SBC. The Media
far end NAT traversal option forces media from the other side to be sent reversely to where the user’s
media came from. Turn it off only if a Call Agent is known to reject symmetric media.

• Enable REGISTER caching must be applied to REGISTER messages for retargetting to function. See
section Registration Caching and Handling for more details.

• Retarget R-URI from cache (alias) action. This action makes sure that INVITEs coming to a registered
client will reach it by sending them to the transport address from which a REGISTER came. The op-
tions Enable NAT handling and Enable sticky transport should be turned on.

The example in the following subsection shows how to place the respective actions in the ABC SBC rulebase.

Note: In an actual deployment, the specific topology needs to be considered carefully. For example, if SIP
passes the SBC twice, RTP could without precaution be also anchored twice resulting in unnecessary performance
degradation. That’s because the SBC recognizes inbound and outbound call legs as two separate calls.

6.11.1 NAT Traversal Configuration Example

This example shows how to put all the NAT-facilitating actions in a consistent rule-base. This example is based
on the “far-end” NAT traversal topology as shown in the Figure NAT Traversal Example: Network Topology. In
this topology, the ABC SBC is multihomed: it connects to the public Internet with one interface and to a private
network with the other interface. Both networks are not mutually routable, the ABC SBC connects them on
application layer. SIP telephones are on the public side behind NATs, service provider infrastructure including a
SIP registrar, proxy, media server and PSTN gateway are located in the private network.

6.11. NAT Traversal 136

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 48: NAT Traversal Example: Network Topology

The first preparatory step to be is handling telephone’s outgoing SIP messages coming from the external realm.
That is done in the external realm’s A rules: Dialog-initiating requests must be fixed in a way that reverse messages
will follow the same path. REGISTERs must be stored along with the transport address from which they came.
Frequent re-registration must be enforced to keep NAT-bindings alive. Eventually RTP anchoring must be enabled.
The configuration fragment is shown in the Figure A-rules for traffic coming from outside.

Fig. 49: A-rules for traffic coming from outside

When requests pass the SIP proxy and come again from the inside network to the SBC, the addresses in them must
be reverted to the form used initially by SIP User Agent. The configuration fragment is shown in Figure A-rules
for traffic coming from inside.

Fig. 50: A-rules for traffic coming from inside

Eventually RTP anchoring is turned in in C-rules for calls going to the public network, as shown in Figure C-rules
for traffic leaving for outside.

6.11. NAT Traversal 137

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 51: C-rules for traffic leaving for outside

6.12 Registration Caching and Handling

ABC SBC’s registration cache mediates the registration flow between SIP User Agents and SIP registrars. It keeps
track of SIP User Agent contacts and shields SIP registrar from overload. It also facilitates NAT traversal. In case
a user agent is located behind a NAT it will use a private IP address as its contact address in the Contact header
field in REGISTER messages. This non routable address would be useless for anyone trying to contact the user
agent from the public Internet.

Fig. 52: SBC and NAT traversal: Registration handling

In order for a SIP User Agent to be reachable the ABC SBC will manipulate its registration information. The
SBC remembers the User Agent’s transport address and replaces the information in the Contact header with its
own IP address before forwarding downstream, see Fig. SBC and NAT traversal: Registration handling. This is
the information that is then registered at the registrar. Calls destined to the user will then be directed to the SBC.
The SBC then forwards the calls using previously stored information about the User Agent’ transport address and
initial unmodified contacts.

The registration cache implements the following functions:

• Contact fixing: SIP contacts of User Agents behind NATs include private IP addresses which are not
routable from the public Internet. Therefore the ABC SBC rewrites the IP address in the Contacts with its
own and holds the original Contact in its cache. If the ABC SBC connects to multiple networks using mul-
tiple IP addresses, the IP address is used which is associated with the interface over which the REGISTER
request is forwarded. When later incoming requests towards the User Agent reach the ABC SBC, the ABC
SBC restores the original address.

• Keeping NAT-bindings alive. If periodic request-response traffic was not crossing the NAT behind which
the User Agent is located, the NAT address binding would expire and the client would become unreachable.
Therefore the ABC SBC steers User-Agents to re-register often.

6.12. Registration Caching and Handling 138

FRAFOS ABC SBC Handbook, Release 5.3

• Registration off-loading. Various circumstances can cause substantial registration load on the server: most
often it is self-inflicted by the keep-alive functionality, but it may be also on the occasion of a registra-
tion storm caused by a router outage, broken client or Denial of Service attack. The ABC SBC fends off
such overload by using high-performance in-memory registration cache that serves upstream registrations
at high-rate, handles them locally, and propagates them down-stream at a substantially reduced rate. That’s
the case if the registrations were to create new bindings, deleting existing ones or if they were to expire
downstream. The propagated registration changes become effective on the ABC SBC only if confirmed by
the downstream server. If a registration expires without being refreshed the ABC SBC issues a reg-expired
event.

The following Subsection, Registration Handling Configuration Options, documents the specific actions that im-
plement the cache functionality. Note that the procedures described here refer to individual URI registration as
envisioned in the RFC 3261. Provisioning of bulk registration for PBXs as specified in the RFC 6140 is described
in the Section Table Example: Bulk Registration.

6.12.1 Registration Handling Configuration Options

The ABC SBC can handle SIP registrations in two ways, either caching them locally and forwarding them to a
downstream registrar, or acting itself as a SIP registrar.

If the ABC SBC fronts a registrar, the action Enable REGISTER caching is applied on incoming REGISTERs
from a User Agent to cache and translate its Contacts. On the reverse path towards the User Agent, the action
Retarget R-URI from cache(alias) restores the original Contacts.

• Enable REGISTER caching - cache contacts from REGISTER messages before forwarding, create an
alias and replace the Contact with alias@SBC_IP:SBC_PORT;contact_parameters. This method should
only be applied to REGISTER messages to be forwarded to a registrar. This action has effects only on
REGISTER requests, see Fig. Enable Register caching.

6.12. Registration Caching and Handling 139

https://tools.ietf.org/html/rfc3261.html
https://tools.ietf.org/html/rfc6140.html

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 53: Enable Register caching

• Retarget R-URI from cache (alias) - Look up cached contact under alias and rewrite the request URI
with it. Apply this action to messages sent to clients whose registration were cached previously using the
“Enable REGISTER caching” action. This scenario is depicted in Fig. Retarget R-URI from cache. When
an INVITE arrives to a user that has previously registered its contact information (UserB) the ABC SBC will
forward the INVITE to the PBX which acts in this case as the SIP proxy and Registrar. The PBX will look
for the registration information of UserB which in this case are aliasB@_SBC-IP_ and use this information
for routing the request. When the INVITE with the Request URI set to aliasB@_SBC-IP_ arrives at the
SBC, the ABC SBC will check its registration cache and retrieve the actual contact information of the
user, namely UserB@2.2.2.2 and use this information as the Request URI and forward the message to this
address.

• Parameters: Enable NAT handling:source IP and port of the REGISTER request; Enable sticky transport:
use the same interface and transport over which the REGISTER was received.

Note: if no matching entry is found in the cache, the ABC SBC returns a 404 SIP response.

6.12. Registration Caching and Handling 140

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 54: Retarget R-URI from cache

If the ABC SBC is used as registrar, the two following actions are used instead: Save REGISTER contract for
REGISTERs and Restore contact for incoming requests towards the User Agent.

• Save REGISTER contact in registrar - act as local registrar by saving the contact and replying with a
200 response.

• Restore contact from registrar - use contact stored within internal registrar

6.12. Registration Caching and Handling 141

FRAFOS ABC SBC Handbook, Release 5.3

6.12.2 Registrar off-load

Registration throttling can be used in both built-in registrar and registrar-cache modes. The action REGISTER
throttling enforces high re-registration rate towards User Agent Client and a reduced rate towards registrar. The
high upstream rate serves the purpose of preserving connectivity by keeping address binding along the SIP path
alive. The reduced rate on the downstream side makes sure that the connectivity traffic doesn’t overload the
downstream registrar. The REGISTER throttling action must precede any other REGISTER-processing action,
otherwise its load-reducing function will take no effect:

• REGISTER throttling - force SIP user-agents to shorten re-registration period while propagating the
REGISTERs upstream to registrar at longer intervals. This is useful to keep NAT bindings open without
imposing the refreshing load on registrar.

• Parameters: Minimum registrar expiration: expiration time used in direction to registrar. Maximum UA
expiration: maximum expiration time in direction to User Agent Client.

Note that these two parameters have vast impact on the volume of SIP traffic: they steer the registration rates
towards upstream SIP client and downstream SIP registrar.

The Maximum UA expiration “knob” steers the SIP traffic rate between upstream SIP client and the ABC SBC. It
suggests to the UA at which time interval it shall re-register. The lower value is enforced, the higher the registration
rate will be. The SIP standard suggests one registration per hour which is not good enough to keep NAT bindings
alive. Forcing the re-registration interval down to 180 seconds will cover a satisfactory share of population behind
NATs. Further reducing the re-registration window will cause substantial increase in bandwidth consumption. See
Section SBC Dimensioning and Performance Tuning for additional details. Note that non-compliant SIP clients
may fail to honor the recommendation provided by the ABC SBC and register less often. The ABC SBC will
still keep their registration bindings alive and allow incoming traffic to them. However IP and transport layer
connectivity may not stay alive without the intense traffic. Contacts of such disobedient clients will show red
expired status in the Registration cache window as shown in Figure Client-side Expired Registration Contact.

The Minimum registrar expiration “knob” steers how much SIP traffic passes through to the downstream reg-
istrar. Basically this parameter suggests to the downstream registrar how long a registration shall remain valid.
The configured value is recommendatory only: the downstream registrar may accept it or change it in its final
responses to REGISTER requests. The value in the response from the downstream registrar is used as the actual
time-to-live for the cached registration binding. Registration renewals are not passed from the User Agents to the
registrar until this time-to-live is about to expire. The longer this window is, the less traffic will be forwarded to
the registrar. On the other hand, a client’s failure to renew its contact will remain undetected by the downstream
registrar and result in “hanging contacts” if the client is actually unavailable.

In the normal case when reduction of the upstream rate is desirable, the ratio of registrar-to-UA must be
greater than 2.0 – otherwise the server registration window will not be long enough to capture more than
one client registration. Typically the ratio is higher, 10.0 at least. The throttling action MUST be placed
before any other register processing actions to take effect.

It is also important to understand the time-to-live of the cached registered contacts in detail. Briefly, the bindings
stay active for the time requested by SIP registrar in response to forwarded REGISTER requests. They will be
deleted if any of the following conditions occurs:

• the UAC fails to re-register its contact before the time-to-live of the contact set by the downstream registrar
expires. That also means that a failure of a User Agent Client to renew its contact within the “client window”
are tolerated by the ABC SBC as long as the time-to-live period is not over. A “reg-expired” event is
generated. (See Section Events (optional)) Example of a registration cache view when only the “UAC-side”
timeout expires is shown in Figure Client-side Expired Registration Contact.

• the UAC explicitly de-registers using procedures described in RFC3261. In this case a “reg-del” event is
generated.

6.12. Registration Caching and Handling 142

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 55: Client-side Expired Registration Contact

6.12.3 Registration Caching and Handling by Example

To enable registrar caching, you must let all REGISTER requests be processed by using the actions REGISTER
throttling ** and ** Enable REGISTER caching. The throttling action takes additional parameters: Minimum
registrar expiration and Maximum UA expiration. The former specifies the “throttle” which reduces the regis-
tration traffic propagated towards a registrar. The value is normally in order of tens of minutes, we chose a whole
hour in our configuration example. The other parameter, Maximum UA expiration, determines the traffic pace
towards the SIP User Agents. The value is normally in order of minutes to keep REGISTER messages flowing
and holding IP connectivity through firewalls and NATs upright. We chose an extremely aggressive value in our
example, half a minute.

Figure Registrar handling shows a screenshot with such a 3600/30 throttling ratio configuration. The rules are
part of a “public” realm serving REGISTERs coming from the public Internet.

6.12. Registration Caching and Handling 143

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 56: Registrar handling

You also need to configure how incoming messages for the registered users will be processed. Particularly the
URIs coming back in incoming requests must be recovered to the original form in the initial REGISTERs received
by the ABC SBC. To do so, enable the action Retarget R-URI from cache, with the enable NAT handling
option turned on for all traffic routed to the public realm. The configuration is shown in Fig. Restoring cached
contacts.

6.12. Registration Caching and Handling 144

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 57: Restoring cached contacts

With this configuration in place, the actual SIP call flows may appear like in the following diagram Call Flow
Registration Throttling.

6.12. Registration Caching and Handling 145

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 58: Call Flow Registration Throttling

The example sequence shows the primary function of the registration throttle: increasing the traffic towards SIP
User Agent (left-hand side) and reducing it towards the registrar (right-hand side). It also demonstrates how SIP
equipment may differ from the expected traffic pattern and how the ABC SBC will deal with it.

The sequence begins with an initial REGISTER. The SIP telephone proposes a “time-to-live” in the message, 600
seconds in this example. (The SIP message element is really called “expires” but we found the “TTL” name more
explanatory.) The ABC SBC chooses to send the traffic to downstream registrar less often, and overrides this
value to a longer period of 3600 seconds. The registrar downstream finds it too high though and agrees to keep
contacts for only 1800 seconds in its 200 SIP response. Now the ABC SBC knows how often it must refresh the
registrations downstream: every half an hour.

In the direction towards the client, the ABC SBC compels the client to re-register more often by advertising it
would only keep the registered contacts for no longer than 30 seconds.

6.12. Registration Caching and Handling 146

FRAFOS ABC SBC Handbook, Release 5.3

As a result, the client keeps registering every half a minute, and the ABC SBC passes on the registration to the
downstream registrar every half an hour. If the client is late with a renewal request, the address binding remains
in ABC SBC registrar cache. If the client is however re-registering too late with respect to the registrar TTL, the
cached registration will expire, same way like of there was no cache. The late re-registration will then create a
newly registered contact.

6.12.4 Registration Agent

The ABC SBC can register itself with a third-party service using a SIP address of record. That allows it to
receive incoming requests for this address subsequently. The ABC SBC does so by sending REGISTER requests
periodically and authenticating them if challenged to do so. This may be for example useful, when an ABC SBC
installation is configured to use the built-in conference bridge and is also supposed to serve calls from PSTN
coming via a SIP-2-PSTN service.

6.12. Registration Caching and Handling 147

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 59: Screenshot of Registration Agent Configuration

The status of registration agent can be inspected under “Monitoring → Registration Agents” as shown in Figure
Screenshot of Registration Agent Monitor.

6.12. Registration Caching and Handling 148

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 60: Screenshot of Registration Agent Monitor

6.13 Call Data Records (CDRs)

The ABC SBC generates Call Data Records (CDRs) for every call processed by the SBC.

For syslog & conference CDRs (experimental), please refer to New restify CDR process.

6.13.1 CDRs Location

CDRs are generated into the directory:

/data/cdr/

They are generated on Source Realm basis, so every CDR is filtered to a specific file with the name „cdr-
source_realm_name.log“. All CDRs also go into one combined file called „cdr.log“.

CDR output files are rotated once a day at midnight and exported to the archive directory: :

/data/cdr/export

The exported files are renamed to include the date and time – e.g. ” cdr.log-201207011200“. The files are stored
for 93 days by default and then are deleted from the disk.

The number of daily rotated files to keep and also the directory for exported files can be changed using Config /
Global config, using settings under “CDRs” tab. The lowest possible number of days to keep the exported CDR
files is one day.

6.13.2 CDR Format

CDRs are stored in CSV format and contain following items in given order:

• Source Realm

• Source Call Agent

• Destination Realm

• Destination Call Agent

• From user part

• From host part

• From display name

• To user part

• To host part

6.13. Call Data Records (CDRs) 149

FRAFOS ABC SBC Handbook, Release 5.3

• To display name

• Local tag (ID for call)

• Timestamp when the call was initiated (format - 2012-05-04 02:22:01)

• Timestamp when the call was connected (format as above)

• End Timestamp of the call (format as above)

• Duration from start to end (sec.ms)

• Duration from start to connect/end (for established/failed call; sec.ms)

• Duration from connect to end (for established call; sec.ms)

• SIP R-URI

• SIP From URI

• SIP To URI

CDR example:

pstnprovider.com,gw1,mobile.com,uas,"alice","example.com","","bob","192.168.1.4","
→˓",
"6D47CCAA-4FF10747000824C5-80299700","2012-07-02 04:28:23","2012-07-02 04:28:28",
"2012-07-02 04:28:33","10.139","4.895","5.244","bob@192.168.1.4:6000",
"alice@example.com", "bob@192.168.1.4"

6.13.3 Access to CDRs

CDRs can be accessed from the host where ABC SBC container is running, under the container filesystem /data/cdr
sub-directory.

To get only exported files (i.e. files that are not updated any more and are ready for post-processing), use the
/data/cdr/export sub-directory.

6.13.4 Customized CDR Records

The content of CDR records can be changed using configuration file :

/etc/sems/cc_syslog_cdr.conf

Only the value of „cdr_format“ option (the CDR structure) can be changed. Changing any other options may
cause CDR subsystem malfunction and should be done by authorized person only.

After changing the CDR configuration file, the SEMS process of the ABC SBC needs to be restarted manually.

Following items can be used in cdr_format option:

• $srcrlm.name - Source Realm

• $srcca.name - Source Call Agent

• $dstrlm.name - Destination Realm

• $dstca.name - Destination Call Agent

• caller_id_user - From user part

• caller_id_host - From host part

• caller_id_name - From display name

• callee_id_user - To user part

• callee_id_host - To host part

6.13. Call Data Records (CDRs) 150

FRAFOS ABC SBC Handbook, Release 5.3

• callee_id_name - To display name

• $ltag - Local tag (internal call identifier)

• $start_tm - Timestamp when the call was initiated (format - 2012-05-04 02:22:01)

• $connect_tm - Timestamp when the call was connected

• $end_tm - End Timestamp of the call

• $duration - Duration from start to end (sec.ms)

• $setup_duration - Duration from start to connect/end (for established/failed call; sec.ms)

• $bill_duration - Duration from connect to end (for established call; sec.ms)

• sip_req_uri - SIP R-URI

• sip_from_uri - SIP From URI

• sip_to_uri - SIP To URI

• disposition - Result of call establishment. Possible values: answered, failed, canceled.

• invite_code - Result code of final reply to initial INVITE (not set for canceled calls).

• invite_reason - Reason phrase of final reply to initial INVITE (not set for canceled calls).

• hangup_cause - Reason for the call termination, set for established calls only. Possible values: BYE, reply,
no ACK, RTP timeout, session timeout, error, other.

• hangup_initiator - Reason for the call termination. It is set for answered calls only where hangup was
caused by request (BYE) or in case of call was terminated because of local error. Possible values: caller,
callee, local

• ucid - Unique Call Identifier. Can be used to map CDRs for transferred calls together. The value is common
for all CDRs generated for calls that are results of unattended call transfer from one original call done by
the ABC SBC.

• call variable - $gui.<call variable name> - Allows to write user specified call variable into CDR. For exam-
ple $gui.experimental_variable will write the value of experimental_variable into CDR. These outputs are
located under “/data/cdr/cdr.log”. The call variable can be set using “Set Call Variable” action, see Binding
Rules together with Call Variables for more details on using call variables.

Please make sure “List of call variables added into events:” section is filled by requested call variable to see in
CDR. Under “Call Events” table, ADVANCED button should be clicked to be able to see call variable on Monitor
as requested.

Important: CDRs are written using syslog and split into per-realm files according to first item that is expected to
be the source Realm. If you change the CDR format the way the first item is not a “realm” name, the files will be
named according to the values in this column and won’t represent per-realm data any more.

6.14 Advanced Use Cases with Provisioned Data

The ABC SBC can be integrated with external or internal sources of data and logic. This allows to complement
its rigid rules-based logic with richer and more complex applications provisioned by the administrator.

The following methods are available:

• Generic RESTful queries to an external server using the Read call variables over REST action. Using
this interface allows to drive the ABC SBC behavior using in-house developed business logic located in
external web programming environments. see Section RESTful Interface for more details.

• Provisioned tables. Solving some problems with tabular nature, like Least-Cost-Routing, Blacklisting,
Dial Plan Normalization or SIP Connect Bulk Registration is much easier if tables are provisioned separately
from the rules. For this reason the ABC SBC supports on-board provider-provisioned databases. See Section
Provisioned Tables for more details.

6.14. Advanced Use Cases with Provisioned Data 151

FRAFOS ABC SBC Handbook, Release 5.3

• ENUM queries using the Enum query action , as described in the section ENUM Queries. This method
allows for a number-to-URI translation using the DNS-based ENUM queries.

6.14.1 RESTful Interface

The RESTful interface embedded in the ABC SBC allows high programmability of the SIP Session Border Con-
troller.

The interface addresses an important dilemma for operators: how to introduce new scenarios, while preserving
the existing ones intact. Hardwired product logic compels the operators to request code changes from vendors.
Change requests result in unavoidably tedious process, weeks or months of negotiation, changes of changes and
delays regardless how small and reasonable the changes are. Therefore ABC SBC comes with the possibility to
implement business logic outside the product in an operator-controlled environment.

This capability follows a general trend in which the business logic is concentrated in a single place that defines
behavior of relatively “dumb” network elements. The business logic defines security policies (who can call whom),
marketing campaigns (at what price), and network behavior (how to route the calls). Placing this logic in a
web server relieves operators from inadequate vendor dependencies and allows PHP, Perl, and virtually any web
programmer to implement new SIP scenarios in a well understood programming environment.

The operation of a RESTful application is simple and consists of three steps characteristic for any computer
program. The steps are depicted in Figure RESTFul Call Flow: The ABC SBC receives an incoming INVITE on
input in the first step A, processes it in step B, and generates a correctly processed INVITE on the output in step
C. The processing in step B is split in three phases: - B.1: RestFul query is formulated that contains all pieces of
SIP information needed to execute the web-based logic. The information is passed in form of URI parameters to
the RESTful server. - B.2: The RESTful server performs the application logic. - B.3: Eventually the RESTful
server sends an answer back to the ABC SBC. The answer contains an array of variables that represent an advice
to the ABC SBC how to handle the message in the final step C.

6.14. Advanced Use Cases with Provisioned Data 152

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 61: RESTFul Call Flow

RESTful Interface using Digest Authentication Example

In this example we show how to outsource digest authentication to the external RESTful server. This relieves
the ABC SBC of implementing a user:password database. It is even designed in a way that leaves the ABC SBC
unaware of the cryptographic authentication protocol: all it does is it shuffles header-fields back and forth.

Background: digest authentication in SIP works by conveying shared password from client to server in a hashed
form. If both client and server hash the password and obtain the same result, identity of client is proven without
sending the password in clear-text.

The whole process follows the steps outlined above. It begins when a SIP request comes in. (only fragment
shown):

INVITE sip:music@abcsbc.com SIP/2.0.
Via: SIP/2.0/tcp 192.168.178.22:54251
From: "foo" <sip:foo@abcsbc.com>;tag=0omQsGfHsCtP8-5k2.t4uJI3ekc66bGZ.
To: <sip:music@abcsbc.com>.
CSeq: 14693 INVITE.
Proxy-Authorization: Digest username="foo", realm="abcsbc.com",
nonce="UP6CiVD+gk0Uyu4WHAv+48ypPC2vjH+6", uri="sip:music@abcsbc.com",
response="560ad1cc8777efa6a6cc1857795ec155".

The INVITE request signals a call from user with address sip:foo@abcsbc.com to address sip:music@abcsbc.com
The ABC SBC checks the request against its rules and initiates the RESTful logic. (see Figure Rule for Evoking a
RESTful query).

6.14. Advanced Use Cases with Provisioned Data 153

sip:foo@abcsbc.com
sip:music@abcsbc.com

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 62: Rule for Evoking a RESTful query

The rule in ABC SBC’s configuration matches by From domain, method and request URI, and therefore processing
is passed to the action “Read Call variables over REST”. ABC SBC is configured to pass several header fields
as URI parameters to the RESTful application. Particularly, the user information relevant to authentication are
passed: Authorization and Proxy-authorization header fields ($H(Proxy-authorization)), request method ($m) and
realm. The domain in From URI ($fh) is used as realm – this way you can build up a multi-domain hosted service,
which will work same for any domain without change.

Now the SBC has received a call, chosen to process it using a web server, the REST can begin by sending an
HTTP query. Let’s see how the query looks on wire. It simply conveys the values chosen in SBC configuration as
URI parameters. Symbols contained in the values are substituted using the escape code %:

GET /2auth.php?method=INVITE&www_auth=&proxy_auth=Digest+username%3d%22foo%22%2c
+realm%3d%22abcsbc.com%22%2c+nonce%3d%22685f3174-6aaf-4337-a9f4-4cf4d1f150ab%22%2c
+uri%3d%22sip%3amusic%40abcsbc.com%22%2c
+response%3d%225b3cc376e815c949bbc084c747a3a55f%22&realm=abcsbc.com HTTP/1.1.
User-Agent: REST-in-peace/0.1.
Host: www.abcsbc.com

When the web server receives this query, it starts an application. In our example we have chosen to build it using
PHP, it could be done same well using Perl, Java, python or any other popular web programming language. In its
own way the interpreter passed the URI parameters to application’s variable and processing begins.

The following PHP code shows key steps during computation. Not all are shown. For a given user, it calculates her
hashed password stored in database and checks it against one coming in the request. If they are equal, it answers
with a 200 answer suggestion, otherwise it advises the SIP server to re-authenticate the user:

// simulation of a database query ... ask username and password
$users = array('foo' => '12', 'guest' => 'guest');
// prepare challenge for the case credentials are invalid
// or missing
$challenge='Digest realm="'.$realm.'",nonce="'.new_nonce().'"'

// no credentials supplied? Request some!
if (empty($proxy_auth)) {

print_answer("407", "Authenticate",
"Proxy-Authenticate: ".$challenge,$cmt);

}
// parse the credentials
$data=parse_hf($proxy_auth);
// calculate expected answer
$expected_response=calculate_answer($data);
if ($data['response'] != $expected_response) {

print_answer(“407”, “authenticate”, “Proxy-authenticate”,
$challenge);

return;
};
// otherwise proceed with OK
print_answer(“200”, “ok”);

Now we have an answer: either a positive 200, or a negative 407 with authentication challenge to be passed to the
SIP client through the ABC SBC. If you observe the wire you will see the following HTTP answer:

6.14. Advanced Use Cases with Provisioned Data 154

FRAFOS ABC SBC Handbook, Release 5.3

HTTP/1.1 200 OK.
Date: Tue, 22 Jan 2013 11:58:47 GMT.
Server: Apache/2.2.3 (Debian) PHP/4.4.4-8+etch6 mod_ssl/2.2.3 OpenSSL/0.9.8c.
X-Powered-By: PHP/4.4.4-8+etch6.
Content-Length: 214.
Content-Type: text/html.
.
code=407.
phrase=authenticate.
headers=Proxy-Authenticate: Digest realm="abcsbc.com",

nonce="685f3174-6aaf-4337-a9f4-4cf4d1f150ab"\r\n.

What you see here in clear-text is, that the programmer has stored the processing results into several variables that
are passed back to the ABC SBC rule-base.

We are in the final stage now – the web application has returned processing results back to ABC SBC, the SBC
will evaluate the parameters in its rules and use them in further SIP processing. Particularly, the rule in Figure
Rule for processing result of RESTful query says, if processing ended up with variable code not being equal to
200, the call will be refused. The negative answer will include parameters determined in the HTTP answer.

Fig. 63: Rule for processing result of RESTful query

Here is the final outcome of our effort: SIP answer calculated in the RESTful server and challenging SIP client to
submit proper credentials:

SIP/2.0 407 Authenticate.
Via: SIP/2.0/tcp 192.168.178.22:54251;received=83.208.91.146
From: <sip:foo@abcsbc.com>;tag=0omQsGfHsCtP8-5k2.t4uJI3ekc66bGZ.
To: <sip:music@abcsbc.com>;tag=50123210ee9d5f0f8df05cf1f196cfeb-c5a6.
CSeq: 14692 INVITE.
Proxy-Authenticate: Digest realm="abcsbc.com", nonce=
→˓"UP6CiVD+gk0Uyu4WHAv+48ypPC2vjH+6"

6.14.2 Provisioned Tables

The ABC SBC rules can refer to an internal database maintained separately from the rules logic. This greatly sim-
plifies use-cases which would have to be implemented using a large numbers of almost identical rules otherwise.
The typical use-cases include tests if a URI is on a blacklist or list of monitored users, static SIP registrations,
Least Cost Routing tables, definition of dialing plan normalization and more.

The tables are physically located on the ABC SBC machine for highest performance, can be provisioned using the
web interface and can include any number of administrator-chosen attributes in addition to the lookup key. There
is also a possibility to provision the data remotely via RPC.

There are two types of tables:

• data - general purpose data tables can be queried to fetch specific data associated with a key. The structure
of such tables can be freely defined by the administrator, thus allowing great flexibility. The data tables are
used from A-rules and C-rules.

• routing - specialized routing tables have a list of mandatory attributes that define routing behavior and are
always present. Additional attributes may be added. The routing tables can only be used from B-rules.

Using the tables is as simple as creating a table with the desired structure, filling it with data, looking up a result in
the table from A,B or C-rules by a selected value, and processing the found data entry. The data entry is returned

6.14. Advanced Use Cases with Provisioned Data 155

FRAFOS ABC SBC Handbook, Release 5.3

to the script processing as variables bearing the names of the table columns. The whole process is described in the
following subsections in detail.

Please be aware that restful provisioned tables queries have some limitation compared to the one available via
GUI. The rest matching cannot emulate a case insensitive match as the data are stored in a redis database, while
it’s a SQL for the later one.

Configuring Tables

The process of setting up a new provisioned table consists of the following steps:

• Analysis of the problem to be solved. You need to specify what data you are going to lookup in a table by
what key and how you are going to use the resulting table record.

• Definition of the table structure. This is started from the Web menu under Provisioned Tables → configure
→ Insert new. There you must identify:

– key lookup operator which is one of equal, range, and prefix. The operator defines the method by
which a key is looked up in a table. It is not possible to lookup in the same table using some other
method. If range is chosen, the resulting table will include two key columns for begin and end of a
range. If prefix is used and overlapping choices are found, the longest match is selected.

– table keys and their types. For range and prefix lookup operator just one key could be defined. For
equal operator multiple keys could be defined. The key type is one of uri, number, call-agent, string.
The type is used for syntactical checking when the actual data is entered later. Even more importantly
it is used to determine how the lookup operator is used. Particularly, prefix lookup is sensible for string
types as it discriminates between “0” and “00”. For numerical types, these two values would be the
same.

– and type of table data or route, as explained above.

– There is also Group-by, which can be none or string. The option string allows to add an informational
tag to each entry so that tables can be viewed by groups.

– Optionally, any number of additional table named columns can be added, whose type must be chosen
from uri, number, call-agent, string. When the “save” button is pressed, the table structure is created
and becomes instantly ready for filling with data.

• Filling tables with data. This is started from the Web menu under Provisioned Tables → (table name).
On the web page that opens, the link Insert new rules opens a dialog for inserting a new data entry. When
editing the new entry is complete, pressing the “Save” button will store it. A Version 4 UUID (RFC 4122)
is automatically added to every entry for sake of internal data maintenance.

• Completing data entry. To make the ABC SBC understand that the newly created records can be used, the
button Activate Changes must be pressed. This allows editing the tables without interfering with the table
as currently being used by the ABC SBC. Activate Changes activates the current version of the table for use
by the ABC SBC, and creates a new table version which is used for further provisioning.

• Introducing the table lookup in the rules. This requires adding the action Read Call Variables. The action
takes the table name as the first parameter and lookup value as the second. The lookup value is typically
formed using substitution expressions (see Section Using Replacements in Rules for a reference.)

6.14. Advanced Use Cases with Provisioned Data 156

https://tools.ietf.org/html/rfc4122.html

FRAFOS ABC SBC Handbook, Release 5.3

Provisioned Table Example: Static Registration

We will start with a relatively simple example: static registration. Similarly to how SIP devices use SIP REGIS-
TER messages to create a temporary binding between SIP Address of Record and actual Contact URI, adminis-
trators can provision a similar association manually and permanently. That means that a table is provisioned and
used the following way:

• The table is keyed by an Address of Record URI and includes the next-hop URI as attribute.

• When a SIP INVITE comes in, its request URI is checked against the table and if the next-hop is found,
replaced with it.

Note that this structure can be used to implement static call-forwarding.

Screenshots of the resulting table structure, table content and rules using the table are shown in the Figures Struc-
ture of Static Registrations, Static Registration Records, and Static Registration Rules respectively.

You can make several observations about the table lookup rule:

• The rule conditions make sure the lookup is only executed for authenticated INVITEs, which helps to
eliminate unnecessary database queries - there is no point in making the table query for other than INVITE
requests. If authentication is requested, the lookup for the first unauthenticated request would be also
useless.

• The table entry is looked up by the replacement expression “$r.” which stands for the current request URI.
The result is returned in variable next_hop, as defined in the table column name.

• If no result is found, the table lookup placed in the rule’s condition will return FALSE and no action will
not be performed.

• If a result is found, we apply two actions: change request-URI and add a header-field for troubleshooting
purposes. Its presence in the outgoing INVITE shows a lookup was performed, the request-URI which was
used as key and the returned value.

6.14. Advanced Use Cases with Provisioned Data 157

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 64: Structure of Static Registrations

6.14. Advanced Use Cases with Provisioned Data 158

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 65: Static Registration Records

Fig. 66: Static Registration Rules

Provisioned Table Example: URI Blacklist

Simple tables can have a great use. In this example we test presence of a SIP element value on a list. That means
that the table only includes keys, with which no additional values are associated. We then look up the elements in
the keys. That can be used to implement scenarios involving all kind of discrimination like:

• Call recording: is a call coming from a user whose calls shall be recorded?

• Domain discrimination: is a call being routed to a listed domain for which some header fields must be
removed or appended?

• URI Blacklisting: is the caller blacklisted?

The following screenshots show the configuration of the URI-blacklisting example: Figure URI Blacklist Struc-
ture, Figure URI Blacklist Content, and Figure Blacklisting Rule. The rule is simple: If the SIP URI in the From
header-field matches a URI in the blacklist table, the request is declined using a 403 response. Note that the lookup
key is concatenated using “sip:” and “$fu”, because the replacement expression $fu does not include a protocol
discriminator.

6.14. Advanced Use Cases with Provisioned Data 159

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 67: URI Blacklist Structure

Fig. 68: URI Blacklist Content

Fig. 69: Blacklisting Rule

Table Example: Dialing Plan Normalization and Least-Cost-Routing

This is a two-in-one example showing two tables that are usually cascaded behind each other: normalization of a
PBX dialing plan and least-cost routing.

Telephone numbers as used within a PBX can have different forms, following local national conventions and
enterprise policies. For example, a typical user of a PBX in Munich dials with three leading zeros followed
by international and area code to reach an international destination, two zeros followed by area code to reach
destinations within Germany, one zero to reach destinations within Munich metropolitan area, and phone numbers
without leading zeros to reach other PBX users. Using this dialing convention is convenient, the number length
only grows with distance. However, these numbers loose significance if one tried to use them globally say to reach
an international PSTN gateway. Therefore it is useful to normalize them in the E.164 format by stripping leading
digits and introducing an appropriate prefix.

6.14. Advanced Use Cases with Provisioned Data 160

FRAFOS ABC SBC Handbook, Release 5.3

The following table shows examples of telephone numbers and how they are normalized for calls from a Munich
PBX:

local number number E.164 equivalent digits to be stripped prefix to be introduced
000140433345678 (US destination) +1-404-333-

45678
3 +

003034567000 (German number) +49-30-3456-
7000

2 +49

078781234 (Munich number) +49-89-7878-
1234

1 +4989

The following screenshots show the configuration of dialing plan normalization: Figure Dialplan Structure, Figure
Dialplan Content, and Figure Dialplan Rules.

Note that the key is defined as string to make sure that prefix “00” in request URI does not match all of “0”, “00”
and “000” as it would if the data type would be numerical.

Fig. 70: Dialplan Structure

6.14. Advanced Use Cases with Provisioned Data 161

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 71: Dialplan Content

Fig. 72: Dialplan Rules

Once the numbers are normalized in the E.164 form, it is also easy to check the destination against a least-cost
routing table to find the most economic PSTN gateway. The table may have the following content: prefix that is
used to march phone numbers, and DNS name of a gateway chosen to serve the matched destination. Longest
match applies which means that the shortest-match is taking lowest precedence and is used as “default route”.

prefix destination comment
+1 us-gateways.com US destinations
+43 austrian-united.com German destinations
+ cheap-pstn.net Everything else

The provisioning process is shown in the following three Figures: Creating an LCR Table, Creating LCR Table
Entries, and Calling the Routing table from routing rules.

6.14. Advanced Use Cases with Provisioned Data 162

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 73: Creating an LCR Table

Fig. 74: Creating LCR Table Entries

Fig. 75: Calling the Routing table from routing rules

6.14. Advanced Use Cases with Provisioned Data 163

FRAFOS ABC SBC Handbook, Release 5.3

Table Example: Bulk Registration

Thanks to an extensions of the SIP standard, it is now possible for a PBX to have one digest identity under which
it can serve a whole range of telephone numbers. The extension emerged out of SIP Forum’s effort to create a
profile for PBX interoperability, that became known as “SIP Connect” and standardized as RFC 6140.

The ABC SBC supports these scenarios and it even makes the deployment scenario much simpler than contem-
plated in the RFC. It allows an arbitrary SIP client, PBX, softphone or any other SIP device to authenticate under
a single URI and receive calls for a whole range of telephone numbers. It works “as is” without requiring any of
the “bnc”, “gin” or GRUU extensions.

The following example call flow assumes a network topology in which the ABC SBC guards an internal network,
in which a combined proxy/registrar is located. The administrator has provisioned the telephone number range
7200-7400 to be server be PBX reachable under the URI sip:pbx@abcsbc.com. Note that a similar scenario could
also be implemented using the ABC SBC’s built-in registrar.

The call flow starts with a SIP registration using digest authentication (1)-(4). When an INVITE comes in (5), the
telephone number in the Request URI is translated to that of the PBX (6). This allows the proxy/registrar behind
the SBC to perform user-location lookup and forward to the PBX through the ABC SBC (7). The SBC then, as
usual, retrieves the original URI, whose username is fixed eventually to be the target telephone number (8):

proxy/
Internet |SBC| registrar |SBC| SIP
→˓PBX
| | | |
→˓|
| | |(2) REGISTER |(1) REGISTER
→˓|
| | |To: pbx@abcsbc.com |To: pbx@abcsbc.com
→˓|
| | |m:<sip:a47b6@abc> |Contact:<pbx@10.0.0.1>
→˓|
| | |<------------------|<---------------------
→˓|
| | | |
→˓|
| | |(3) 200 OK |(4) 200 OK
→˓|
| | |------------------>|--------------------->
→˓|
|(5) INVITE |(6) INVITE | |
→˓|
|sip:7271@any.com |sip:pbx@abcsbc.com |(7) INVITE |
→˓|
|---------------->|x-pbx-user: 7271 |sip:a47b6@abc |
→˓|
| |-------------------->|x-pbx-user: 7271 |(8) INVITE
→˓|
| | |------------------>|sip:7271@10.0.0.1
→˓|
| | | |--------------------->
→˓|

To orchestrate this call-flow, the following configuration steps must be taken:

• A number range must be defined and assigned to the URI the PBX owns. This is done using the table-
provisioning feature. The screenshots showing this process are in the Figure Definition of the Number
Range Association and Figure Assignment of a Number Range to a URI.

• In a rule, incoming INVITEs (5) must be tested against the available ranges. If such a range is found, the
request URI must be translated to that owned by the PBX. At the same time the telephone number must
be preserved in a request-URI parameter and/or proprietary header-field (x-pbx-user here), whichever the
registrar behind the SBC can better deal with. (6) The configuration is shown in Figure Assignment of a

6.14. Advanced Use Cases with Provisioned Data 164

https://tools.ietf.org/html/rfc6140.html
sip:pbx@abcsbc.com

FRAFOS ABC SBC Handbook, Release 5.3

Number Range to a URI.

• Before the INVITE is eventually sent to the PBX, it must include the destination telephone number in the
request URI. This is done in a rule that retrieves the phone number from the request URI parameter or
header-field, in which it was stored in the previous step. The configuration is shown in Figure Retrieving
the Telephone number back in request URI.

Fig. 76: Definition of the Number Range Association

Fig. 77: Assignment of a Number Range to a URI

6.14. Advanced Use Cases with Provisioned Data 165

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 78: Placing PBX’s Address in request URI and Storing the Original Telephone Number

Fig. 79: Retrieving the Telephone number back in request URI

Provisioning Tables Using RPC

In the case that the ABC SBC administrator already has a table available, it will be easier to transfer it automatically
to the ABC SBC as opposed to typing it in the web-interface. This can be accomplished using the ABC SBC’s
XML-RPC data provisioning interface.

Check following sections for more information: Reference XML-RPC functions and its Provisioned Tables sub-
section.

6.14.3 ENUM Queries

ENUM (RFC 3761) is a DNS-based phone number database that translates telephone numbers into URIs. For
example, the telephone number +1-405-456-1234 can be translated to sip:mrs.somone@abcsbc.com. This is often
used to find SIP address for a VoIP user when she receives a call from the PSTN under her telephone number.

An ENUM query can be run using the Enum query action. This action queries the default DNS resolvers
configured in the SBC host with an Enum query, and sets the request URI to the result.

Fig. 80: Using Enum queries

By using a different domain suffix than the default one (e164.arpa), private enum servers can be queried. This is
in fact the way ENUM is widely used – as of today, no public ENUM service with global coverage has emerged.

The result of the Enum query can be tested using the Last Action Result condition. If it returns true, the ENUM
query returned a URI, false is returned otherwise. In case of success, the ENUM-returned URI has rewritten the
request-URI and may be rewritten using the ($rU) replacement expression.

6.14. Advanced Use Cases with Provisioned Data 166

https://tools.ietf.org/html/rfc3761.html
sip:mrs.somone@abcsbc.com

FRAFOS ABC SBC Handbook, Release 5.3

6.15 SIP-WebRTC Gateway

WebRTC is a relatively new protocol suite added to the VoIP technology that makes a telephone out of every
capable web browser. As a result, users can click-to-dial a company representative, easily access video-telephony
from within other web applications and receive calls from any web-browser, be it on their PC, smartphone or
Internet cafe.

All of that while enjoying confidentiality widely available to consumers as never before in telephony’s history.
Both analog and digital telephony were inherently insecure, mobile telephony secured at least the wireless hop,
yet rather weekly. SIP’s security protocols, PGP, S/MIME and Identity (RFC 4474) desperately failed to be
adopted. With WebRTC, we have proven web-based cryptographic protocols that just work!

The key missing piece for connecting Web clients to the SIP telephony is a SIP-WebRTC gateway – see the left-
most element in the Figure Integration of RTC, SIP and PSTN Networks using the RTC Gateway. The gateway
connects the populations of web users, SIP telephony users and traditional telephony users behind PSTN gateways.
The gateway also provides a practical and yet fairly secure communication model: on the “internal” SIP-based
side of the gateway, traditional IT practices for securing controlled networks can be used, while on the public
Internet facing side proven cryptographic protocols are used. That is where the ABC SBC comes in: its border
control instruments in combination with built-in RTC gateway allow to form a viable security model.

Fig. 81: Integration of RTC, SIP and PSTN Networks using the RTC Gateway

The gateway anchors signaling and media and performs translation between different standards for WebRTC
and traditional VoIP, particularly security, codecs and signaling protocols as shown in Figure WebRTC Gateway
Protocol Stack.

6.15. SIP-WebRTC Gateway 167

https://tools.ietf.org/html/rfc4474.html

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 82: WebRTC Gateway Protocol Stack

Integrating a gateway in a SIP network is fortunately straight-forward. When a SIP-WebRTC gateway is installed
and configured to connect to an existing SIP services (PBX, public SIP service), WebRTC clients can immediately
reach and be reached from the SIP service. The existing SIP service does not need to be modified at all – it treats
WebRTC traffic from behind the gateway as regular SIP traffic.

The rest of this section is split in the following parts: brief introduction to the WebRTC protocols and network
architecture is given in Section WebRTC Network Architecture and Protocols. Configuration of the gateway is
explained in subsequent sections: WebRTC Network Configuration, WebRTC Credentials Configuration, and We-
bRTC Rules Configuration. Eventually we provide guidelines for starting an RTC gateway using the Amazon
Elastic Cloud services in Section Amazon Elastic Cloud Configuration Cookbook. We offer several methods using
either predefined configurations or using manual configuration, and starting a single gateway or a whole failsafe
cluster. We also provide recommendations for starting a geographically-dispersed service.

If you plan to start the RTC gateway service in front of an existing SIP service rapidly, best proceed directly to the
Section Amazon Elastic Cloud Configuration Cookbook.

6.15. SIP-WebRTC Gateway 168

FRAFOS ABC SBC Handbook, Release 5.3

6.15.1 WebRTC Network Architecture and Protocols

The WebRTC protocol suite for telephony specifies use of the following protocols:

• G.711 and OPUS (RFC 6716) for audio codecs. Opus is a lossy compression, low-delay, codec with
constant and variable bitrate ranging from 6kbps to 510 kbps. G.711 is legacy PSTN audio codec at 64
kbps.

• VP8 (RFC 6386) for video codec. VP8 is an irrevocably royalty-free codec.

• SRTP (RFC 3711) for secure real-time media transmission.

• DTLS (RFC 4347) for keying. - SIP over Websockets (RFC 7118) as one of possible protocols for signal-
ing. It is slightly aligned SIP using websockets as transport. It is particularly easy to translate to and from
legacy SIP.

• ICE (RFC 5242), STUN (RFC 5389) and TURN (RFC 6062) for NAT traversal. STUN is a probing
protocol that allows clients to detect how it is reachable over NATs. TURN is a STUN-based protocol that
allows a client behind NAT to allocate a publicly reachable IP address from a server and tunnel traffic from
and to it. ICE is methodology for finding the best combination of IP addresses to communicate between
clients.

At the time of publication of this handbook, Firefox (version 23 and above) Chrome (version 28 and above),
Opera (version 20 and above) and Safari (Preview, June 1017) were supporting this protocol stack and have
demonstrated mutual interoperability. Several JavaScript applications1 emerged that implemented signaling using
SIP over websockets.

In the simplest scenario, two browsers can use the protocol stack to interconnect with each other. Most of this
document is however concerned with the case when one party is using a WebRTC capable browser, and the other
party is using a SIP phone or a PSTN phone behind a SIP gateway. This is the most complicated and also critical
scenario because it connects the web telephony users to existing population of SIP users. The key component in
this scenario is WebRTC-to-SIP gateway which translates signaling and media between the WebRTC and non-
WebRTC SIP protocol stacks.

The WebRTC clients use the protocol stack is shown in Figure RTCWeb Protocol Flows. Initially the client
registers itself to become reachable for incoming calls. It does so by sending a SIP REGISTER message over
websockets. It is that simple.

1 The JSSIP application is available under MIT License and can be obtained from http://jssip.net.

6.15. SIP-WebRTC Gateway 169

https://tools.ietf.org/html/rfc6716.html
https://tools.ietf.org/html/rfc6386.html
https://tools.ietf.org/html/rfc3711.html
https://tools.ietf.org/html/rfc4347.html
https://tools.ietf.org/html/rfc7118.html
https://tools.ietf.org/html/rfc5242.html
https://tools.ietf.org/html/rfc5389.html
https://tools.ietf.org/html/rfc6062.html
http://jssip.net

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 83: RTCWeb Protocol Flows

When the browser user wants to make a call, it is a more complicated process. The browser starts the ICE process
in which it learns IP addresses under which it can be reached. The IP addresses include the WebRTC client’s own,
its own as seen on the Internet and learned using the STUN protocol, or even a completely different IP address
belonging to a TURN media-relay. When the browser initiates SIP signaling, it offers all IP addresses learned in
the previous phase. After the called party answers the call, the client probes the IP addresses against the caller to
chose the IP address with best IP connectivity. When the “best” IP address is chosen, an encryption session-key is
generated using DTLS and media is exchanged using SRTP.

The actual media call-flow can vary depending on how the WebRTC application is configured and the actual
call-by-call result of ICE connectivity checks. In a typical scenario deploying FRAFOS gateway, media is sent
directly between the WebRTC client and the gateway. This is shown in the Figure RTCWeb Protocol Flows as
the green dashed-dotted line. However, the WebRTC application can be also configured to communicate using a
TURN server which introduces another hop to the media path. That’s the dashed green line in the Figure. It can
be for example useful if one wishes to relay media using TCP protocol. It can also occur that both call parties are
WebRTC clients on the same subnet and media can flow the shortest-path between them – shown as solid line in
the Figure.

However, in scenarios using the gateway the most practical client configuration choice is to limit ICE process to
its own IP address. That eliminates gathering the STUN and TURN choices and greatly reduces “post-pickup
delay”, i.e. the period of time between when the caller answers and media can be actually heard and seen.

6.15. SIP-WebRTC Gateway 170

FRAFOS ABC SBC Handbook, Release 5.3

6.15.2 WebRTC Network Configuration

This subsection is about what components must be placed in the network and how they must be configured to
enable working WebRTC call-flows. First, the following planning questions must be answered:

• do you want to enable NAT/firewall traversal using media over TCP? This may increase the NAT/firewall
traversal success rate. If so, the TURN server application must be used on the media interface.

• which client do you want to use? The RTC-capable Web-browser alone includes the RTC engine but still
needs an application that uses it. There are various commercial and open-source projects implementing the
VoIP functionality, such as JSSIP.

• do you want to integrate the gateway functionality in an SBC or run it on a dedicated server? We suggest
to use a dedicated server unless you have a good reason for tight integration. With a dedicated server, it
is easy to discriminate WebRTC-to-WebRTC calls from WebRTC-to-RTC, apply different security logic to
WebRTC clients, and avoid interference with legacy-SIP configuration.

• under which IP address and port number will be the websocket interface available? To enable websocket
communication, you must configure an SBC interface and create a Call Agent linked to the interface. The
interface configuration dialog is shown in Figure Websocket Interface Configuration. The most important
element is “Interface type” which must be set to “websocket signaling”. The Call Agent configuration
is shown in Figure Websocket Call Agent Configuration. By setting its interface to the previously created
websocket interface and its IP address to “All” (0.0.0.0/0), it captures every WebRTC clients communicating
with the ABC SBC using websockets.

6.15. SIP-WebRTC Gateway 171

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 84: Websocket Interface Configuration

6.15. SIP-WebRTC Gateway 172

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 85: Websocket Call Agent Configuration

6.15.3 WebRTC Credentials Configuration

Confidentiality of calls by encryption is one of the major WebRTC features. Fortunately, it is rather easy to
configure. DTLS-SRTP is always enabled in current version of ABC SBC (in previous versions there was pos-
sibility to disable it). All other configuration options are optional. Such configuration is shown in Figure SRTP
Configuration Page.

Fig. 86: SRTP Configuration Page

6.15. SIP-WebRTC Gateway 173

FRAFOS ABC SBC Handbook, Release 5.3

When no further options are selected, the ABC SBC creates ad-hoc self-signed credentials. A particular advantage
of these is the length of resulting DTLS-SRTP packets will be bellow 1500-bytes packet length which is almost
always certain to traverse networks without IP fragmentation.

If you prefer your own certificates, you must upload them using the “DTLS certificate file” and “DTLS private
key file” global config options (located under Misc tab).

Note that some credentials may result in too long DTLS-SRTP packets. If they exceed the length of 1500 bytes,
they will be most likely fragmented and may result in failure to set up media channel. This is almost certain if
there are NATs along the communication path.

6.15.4 WebRTC Rules Configuration

The configuration of the rules for SIP-WebRTC gateway must address both generic SIP processing aspects, which
is routing and NAT traversal, and then specific aspects of WebRTC interworking.

In this configuration example we assume topology shown in Figure RTCWeb Protocol Flows, two types of calls:
WebRTC-to-RTC and RTC-to-WebRTC, and media flowing through the ABC SBC along the dash-dotted green
line.

The SIP routing flow is rather simple in this scenario: every call coming from the WebRTC Call Agent (i.e. over
the websocket interface) will be routed to a SIP PBX, and reversely every call coming from the PBX will be routed
to RTC browsers using websockets. The routing configuration is shown in Figure SIP-WebRTC Gateway Routing
Rules.

Fig. 87: SIP-WebRTC Gateway Routing Rules

The task of A and C rules is to anchor media to itself and to determine when to convert calls from RTC to SIP
and vice versa. Therefore we create two realms: one for RTC clients and one for SIP clients. For each of them,
we create one Call Agent that captures all traffic from/to any IP address flowing through the websocket and SIP
interface respectively. The actions are configured to accommodate the following policies :

6.15. SIP-WebRTC Gateway 174

FRAFOS ABC SBC Handbook, Release 5.3

Realm Direction Policy (Actions)
RTC A-rules

• enforce frequent re-
REGISTERs to keep
persistent TCP connec-
tions for websockets alive
(REGISTER throttling)

• cache registrations to for-
ward SIP calls for RTC
clients properly (Enable
REGISTER caching)

• fix NAT bindings (Enable
Dialog handling)

• anchor media, offer ICE
and RTC Feedback to RTC
clients (Enable RTP An-
choring)

RTC C-rules
• anchor media (Enable RTP

Anchoring)
• enforce SRTP using DTLS

keying (Force RTP/SRTP)

SIP A-rules
• lookup registered RTC user,

decline the call if offline
(Reply to request with rea-
son and code, Retarget R-
URI from cache (alias)))

• anchor media, don’t offer
ICE to SIP callers (Enable
RTP Anchoring)

SIP C-rules
• anchor media (Enable RTP

Anchoring)
• enforce plain RTP on the

way to the SIP Call Agent
Force RTP/SRTP

We have met most of the rules in previous sections: driving re-registrations high to keep transport-layer connec-
tions alive, caching registrations, fix bindings and anchor media. Now we need to include the specifics of SIP and
RTC interworking. SIP calls towards RTC clients must appear RTC-capable, i.e. they must offer SRTP encryption,
ICE connectivity checks and RTC feedback. Reversely, the RTC calls to SIP must be transformed to plain RTC.

The “Force RTP/SRTP” action determines if plain RTP or SRTP is used for a call. When this action is placed in
C-rules, it converts media for the called party into the enforced protocol. When SRTP is chosen, one must set an
additional option: the keying protocol. Only DTLS makes sense for RTC. In our example we convert all media
traffic towards SIP devices by placing “Force RTP” in SIP realm’s C-rules. Analogically we convert all media
traffic towards RTC clients by placing “Force SRTP” in RTC realm’s C-rules. The “Force SRTP” action is using
“DTLS” as the keying option because that’s the keying protocol standardized for use with RTC.

One could also use the “Force RTP/SRTP” action in A-rules: here however it only determines if the caller’s SDP
offer complies to the enforced preference and rejects the call otherwise. We are not using this kind of admission
policy in our example.

The other options specific to the RTC interworking use-case are specific to how we anchor media. We need
to make sure that RTC clients relying on ICE will receive proper STUN answers for their connectivity checks

6.15. SIP-WebRTC Gateway 175

FRAFOS ABC SBC Handbook, Release 5.3

towards the built-in media relay and also RTC feedback. Therefore, we turn the options “offer ICE” and “offer
RTCP feedback” on in the media anchoring action for both RTC A-rules and C-rules. The A-rules make sure that
incoming RTC call offers obtain ICE and RTC/F capable answers, the C-rules ensure that SDP offers towards the
RTC clients will be also ICE and RTC/F capable.

The resulting configuration is shown in Figures Configuration of RTCWeb Rules for RTC Realm and Configuration
of RTCWeb Rules for SIP Realm for the RTC and SIP realm respectively.

Fig. 88: Configuration of RTCWeb Rules for RTC Realm

6.15. SIP-WebRTC Gateway 176

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 89: Configuration of RTCWeb Rules for SIP Realm

Note that this configuration works even if two WebRTC clients connect to each other through the gateway. How-
ever the WebRTC-to-RTC conversion and forwarding to the SBC still takes place resulting in an WebRTC-to-
RTC-to-WebRTC loop,as shown in Figure The WebRTC-to-WebRTC Loopback.

6.15. SIP-WebRTC Gateway 177

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 90: The WebRTC-to-WebRTC Loopback

Optionally it may be useful to manage codec negotiation. For example, one could blacklist G.711 in favor of
OPUS, if there are SIP clients that can speak the codec. Or video could be stripped off, if there is no support for
royalty-free VP8 codec. Note though that if codecs are stripped too aggressively, a SIP user agent may fail to
interoperate and return a 488 in UAS or an immediate BYE in UAC role.

6.15.5 WebRTC Interoperability Recommendations

The WebRTC standard and implementations are relatively new and as result degree of interworking largely de-
pends on network configuration and used client. Unfortunately interoperability is still changing with every new
version of WebRTC stack and the clients built upon it.

Network complications typically arise when there is a “middlebox”, an Application Layer Gateway (ALG) or an
HTTP proxy in the path. This sort of network equipment manipulates HTTP traffic in a way that may impair inter-
operability. If the middlebox cannot handle the websocket extension of the HTTP protocol, signaling connection
will fail. Therefore the default transport protocol for SIPoWebsockets is TLS.

WebRTC application complications typically arise when the application has imperfect support for the SIP protocol
running on top of websockets, and/or changes its behavior with a new software version. *We urge our customers
to test extensively the client application before initial deployment of a WebRTC service AND during an
update to a newer version.*

The most “fluid” interoperability difficulty is continuous changes to the WebRTC protocol stacks hidden insider
the browsers. Almost with every browser release, some minor changes appear that impair interoperability. Until
the environment becomes more stable, typical reaction is reverse analysis of the new interop behavior and using
ABC SBC mediation features to address it. For example, Chrome browsers Version 39.0 and higher are known not
to handle “early media” correctly. The ABC SBC configuration allows to mediate “183 early media” into regular
“180 ringing” as shown in Figure WebRTC Mediation Example.

Fig. 91: WebRTC Mediation Example

6.15. SIP-WebRTC Gateway 178

FRAFOS ABC SBC Handbook, Release 5.3

In summary, while the industry is converging to a solid level of interoperability, thorough effort during initial and
regression tests is highly recommended.

6.16 Amazon Elastic Cloud Configuration Cookbook

An easy way to start and run an RTC gateway is “off a cloud”, i.e. on a hosted platform, without purchasing
and operating own physical infrastructure: computers, racks, disks and IP connectivity. A single click is enough
to start a service, of course as long as you keep paying for the cloud services. Whereas there are many “cloud
platforms”, we focus on running the RTC gateway on the Amazon Web Services (AWS) platform in this section.

The AWS platform is a mature system that allows, among many other useful things, to start and run pre-built
virtual machines, load-balance traffic among them, monitor their health and scale the infrastructure up and down
to be on par with user load. Applications, RTC-to-SIP gateway in our case, come pre-installed ready-to-start in
form of a virtual machine image, called AMI (Amazon Machine Image).

The FRAFOS RTC gateway installation is pre-configured to address a simple yet useful scenario: add RTC con-
nectivity to a running SIP PBX service. Once started, the RTC gateway passes RTC registrations and calls coming
from RTC clients down to the PBX(s). Reversely, the gateway routes calls coming from the SIP PBX(s) to the
previously registered RTC browsers. No further configuration is needed.

The following subsections describe how to start the RTC-to-SIP gateway service off the amazon platform. We
offer you several ways to do the same: the easiest is launching a cluster using Cloud Formation template. This
way you create a load-balanced scalable infrastructure by pressing a button without any further knowledge of how
the components must be configured. If you want to understand in more detail how the gateway works, you can
launch a single-instance service and/or configure it in detail step by step.

We suggest you explore our demo site https://go.frafos.com. It includes additional information about use of AWS
and WebRTC technologies, including live services and ready-made demo AMIs and Cloud Formation Templates.
These can be launched by a single click without any need for further configuration. Note that the demo versions
have a 90-seconds limitation to maximum call duration.

6.16.1 Before you Start: Prerequisites and Important Warnings

Before you start, you shall have the following:

• Amazon Web Services (AWS) account. Note that the accounts come with several service plans charged at
different levels, and credit card number and a telephone must be ready to verify identity and payment. Go
to http://aws.amazon.com to sign up.

• AWS Elastic Cluster SSH keypair. This is important to be able to administer the virtual machines remotely.
If you haven’t created or uploaded one, do so under “EC2→Keypairs”. If you want to start the services in
multiple regions, make sure that you have a keypair for every region before you start.

• Amazon Machine Image (AMI) with the RTC-2-SIP gateway from FRAFOS. You will find the right one for
your geographic region on our experimental web page, https://go.frafos.com/.

• RTC-enabled browser for testing. Latest version of Chrome has been tested by FRAFOS to play well, yet
there are other implementations as well.

• Optional: Publicly available SIP service and a SIP account. You need to have a SIP URI and password
with a SIP service to be able to make calls through the RTC-to-SIP gateway. Otherwise you can only make
anonymous calls.

• Optional: a DNS name under which your RTC-to-SIP gateway will be reachable

To begin visit our experimental web page https://go.frafos.com/. The web page contains predefined links to avail-
able AMIs that allow you to launch quickly.

Note: IMPORTANT: USE OF AMAZON WEB SERVICES WILL INCURE ADDITIONAL COST. ALL DATA
CREATED AND STORED ON AN INSTANCE SUCH AS PROVISIONED TABLES, ABC RULES, CONFIG-

6.16. Amazon Elastic Cloud Configuration Cookbook 179

https://go.frafos.com
http://aws.amazon.com
https://go.frafos.com/
https://go.frafos.com/

FRAFOS ABC SBC Handbook, Release 5.3

URATION PARAMETERS, LOG FILES AND MORE REMAINS ON THE INSTANCE AND WILL BE LOST
UPON INSTANCE TERMINATION.

6.16.2 Quick Start Using Cloud Formation

The ultimately fastest way to launch your service is using amazon’s Cloud Formation. The Cloud Formation
amazon.com service is used to quickly start a whole network based on a description included in a template.
The template includes information about virtual instances, how to scale them up and down, how to spread the
load across them using a load-balancer, and what firewall policy to use to filter IP traffic: quite some work if
administrator was setting all of this up manually.

FRAFOS has created a starter template to be used to start a fail-safe cluster of one-to-four gateways behind a
load-balancer. The template is available on our site, https://go.frafos.com.

During the process you will be prompted for very few parameters. Their scope can change as we keep developing
the template and for most cases they are best served by leaving them to their default values. The only required
parameter you must set is the name of your SSH key. Once you start the cloud formation process, it takes several
minutes until it completes. After the stack is launched, you will have one load-balancer and one to four gateways
running behind it. A URI shown upon completion of the cloud formation process will allow users to download a
demo JavaScript application and start using the service. Sometimes you may need to be patient for a couple of
minutes until the service is really “warmed up”.

When trying to place your first phone call, you may for example try to call sip:music@frafos.net. When opening
the web-page, allow the browser to accept self-signed certificate and use your microphone and camera.

Fig. 92: Screenshot: First Browser Call to music@frafos.net

Also you can try out the built-in audio conferencing bridge by dialing an 8-digit number prefixed with *. Anyone
calling the same address will appear in the same conferencing room.

As the next steps, you can follow the links that show in the Cloud Formation Output window: a WebRTC web
telephony application and the ABC Monitor (use sbcadmin username and default password). You can also admin-
ister the actual instances by going to their web address “https://IP/”, username “sbcadmin” and password equal to
instance ID. For example, you can review rules that remove video streams between WebRTC and legacy SIP to
allow at least audio where video signaling often fails, or look at the dialing plan for the on-board conferencing.

6.16. Amazon Elastic Cloud Configuration Cookbook 180

https://go.frafos.com
sip:music@frafos.net
mailto:music@frafos.net
https://IP/

FRAFOS ABC SBC Handbook, Release 5.3

6.16.3 Quick Start: Launch Single Instance

If beginning with a cluster may appear too heavy start, one can also start a single RTC gateway instance instead.
This can be done also from our site, https://go.frafos.com.

During the process you will be prompted for instance type, detail, used storage and security group. Choose an
instance type with at least 2GB RAM and leave everything else except the Security Group to default. The security
group must be set to permit the following flows from 0.0.0.0/0:

• TCP/5060-5069 — SIP service

• UDP/5060-5069 — SIP service

• TCP/443 - web user interface

• TCP/22 — secure shell

• UDP/10000-11000 RTP media

Eventually chose an existing or create a new key-pair and store the private key securely.

Once the virtual machine is up and running, you can access administrative interface using the https://PUBLIC_IP/.
The administrative username is “sbcadmin”, the password is the ID of your amazon instance. You can also access
remote shell if you login using the private part of the AWS SSH key:

$ ssh -i .ssh/frafos-aws-keypair.pem -l ec2-user 54.171.123.109

If you would like to use additional AWS features that the instance supports, CloudWatch and System Manager,
you must enable an instance role that permits these. An easiest way to do so is to create an AWS/EC2 role with
predefined permissions “EC2 Role for Simple Systems Manager” (AmazonEC2RoleforSSM) and attach it to the
instance.

6.16.4 Updating License

On Amazon Cloud there is an easy way to install centrally a license file that is then used by all newly started
ABC SBC instances. This is practical when you upgrade to a feature-richer license and do not want to configure
the license individually in every new instance. The license is then used by both instances that are newly started
individually as well as via Cloud Formation and AutoScaling. You only need to make sure the license file matches
the AMIs you are using.

After obtaining the license file from FRAFOS support, all you need to do is to enable instance’s access to
Systems Manager (see http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-access.
html#sysman-configuring-access-role) and put the license in a parameter with a well-known name in the Pa-
rameter Store. The Parameter Store is located under the EC Dashboard under “System Manager Shared Resources
→ Parameter Store”. The parameter name must be “/abcsbc/license” as shown in the screenshot bellow.

Note that setting this parameter does not affect running instances, only applies to the AWS Region for which you
provisioned it, and must include a license specific to the AMIs you are using.

6.16. Amazon Elastic Cloud Configuration Cookbook 181

https://go.frafos.com
https://PUBLIC_IP/
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-access.html#sysman-configuring-access-role
http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-access.html#sysman-configuring-access-role

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 93: Screenshot: Setting License in Amazon Parameter Store

6.16.5 Introducing Geographic Dispersion

Introducing geographic redundancy and dispersion may be useful to become resilient against regional disasters
and/or decrease VoIP latency. Latency may have major impact on quality of service. For example if an American
user accesses a European RTC gateway to reach an American SIP PBX, media will travel across the Atlantic back
and forth, resulting in noticeable latency and QoS degradation.

Fortunately there is an easy-to-manage way with AWS to build up geographic redundancy for both individual
instances and whole clusters. All that needs to be done is creation of the instances or whole stacks as described
in previous subsections multiple times in different regions, and linking their addresses to a single latency-routed
DNS name. That is a particular feature of Amazon Route53 DNS service, that returns the lowest-latency IP
address associated with a DNS name.

We experimented with this amazon feature and confirmed significant latency savings. In our example, we created
two instances, one located in Ireland, the other in California. We create CNAME records “”eu.areteasea.com” and
“us.areteasea.com” for them. Eventually we created the latency-routed global DNS name entries “world” for both
regions, as shown in Figure Screenshot: Creating DNS Latency-based Routing Records.

Fig. 94: Screenshot: Creating DNS Latency-based Routing Records

6.16. Amazon Elastic Cloud Configuration Cookbook 182

FRAFOS ABC SBC Handbook, Release 5.3

Clients trying to open up a connection to “world.areteasea.com” resolve this DNS name to different IP addresses
depending on where they ask from.

One can easily verify the outcome by using services like Cloud Monitor. (http://cloudmonitor.ca.com) Results
shown in Figure Latency Measurements for Multiple Sites Served by Route-53 Latency-Routing prove that prox-
imity makes a difference. Clients in geographic proximity of the two sites feature minimum latency bellow 50ms:
US from California to Illinois show 30 to 50ms, Western Europe shows 24-37 ms, Ireland 8 ms. Clients located
out of served continents have significantly higher latency, starting with 180ms for Australia, slightly above 200ms
for Argentina and Egypt, and peaking with 329 ms in China – values that make VoIP quality poor.

6.16. Amazon Elastic Cloud Configuration Cookbook 183

http://cloudmonitor.ca.com

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 95: Latency Measurements for Multiple Sites Served by Route-53 Latency-Routing

6.16. Amazon Elastic Cloud Configuration Cookbook 184

FRAFOS ABC SBC Handbook, Release 5.3

After we had disabled the European site, all sites began to be served by the Californian server and we observed
increase in minimum latency of European clients up to 160-180 ms, i.e. by about 130 ms! Therefore we recom-
mend anyone serving global user population to consider establishing presence in multiple amazon’s availability
zones.

6.16.6 Monitoring the Autoscaling Cluster Using CloudWatch

Once the cluster is up and running, it may be worthwhile to experiment with its autoscaling behavior and monitor
how the cluster reacts to varying load. There are various ways how you can observe the status of the cluster
using Amazon’s CloudWatch facility. The CloudWatch facility collects data from all related instances and load-
balancers, aggregates it for the whole autoscaling groups and triggers alarms if some critical values are exceeded.
The collected data, how it is aggregated and when it triggers autoscaling alarms is part of the CloudFormation
template definition, so if you started the cluster using the template it is already in place. By default, the autoscaling
alarms add a new instance when it the average CPU load in the cluster exceeds 80% for several minutes, and
remove an instance if it drops bellow 60%.

The interesting data you can observe include the event-by-event history under “EC2 → Autoscaling Group → Scal-
ing History”, details of autoscaling alarms in the CloudWatch Console, and graphs showing the cluster changes
along a timeline are also found in the CloudWatch console. The rest of this section shows typical autoscaling
situations and how you can inspect them using these monitoring facilities.

The first Figure Screenshot: Scaling History shows example of scaling history. We interpret it in time order from
bottom up. Initially when the Autoscaling process started it launched the first instance at 12:34. Because we kept
the machine busy, some seven minutes later at 12:40 the Autoscaling process chose to reinforce the cluster. It
increased the desired capacity to 2 and launched a new instance. Then we started reboot of an instance to simulate
a failure. The ELB checks detected the unresponsive instance at 12:48, terminated it, and started a new one.
Eventually we relaxed the load, the low-CPU alarm was triggered in response to which the Autoscaling process
reduced cluster size back to one.

6.16. Amazon Elastic Cloud Configuration Cookbook 185

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 96: Screenshot: Scaling History

The next Figure CloudWatch Screenshot: Low Load Alarm shows details of a CloudWatch autoscaling alarm. It
displays a situation when cluster began to be idle after a period of congestion and an alarm is raised to scale the
cluster down. The autoscaling process will remove an instance in response to this alarm.

6.16. Amazon Elastic Cloud Configuration Cookbook 186

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 97: CloudWatch Screenshot: Low Load Alarm

Development can be show in different time-scales using CloudWatch graphs. Figure CloudWatch Graphs: Corre-
lation of Cluster CPU Load and Autoscaling shows how detection of overload and idle conditions affect cluster
size along the time axis. There are three lines in the graph: the orange line shows average CPU load in the cluster.
The autoscaling assessment of needed capacity is shown using the blue-line and the actual number of available
instances is shown using green line. The CPU-load-line leads the changes: it must remain for a period of time
above the threshold of 80% until the auto-scaling process determines to increase the target capacity. It then takes
some time again until the capacity is ready: a new instance must be launched, detected as ready and included in
the load-balancer’s distribution list. Therefore the green line legs behind the blue-line, and the blue-line always
legs behind the orange-line.

Fig. 98: CloudWatch Graphs: Correlation of Cluster CPU Load and Autoscaling

6.16. Amazon Elastic Cloud Configuration Cookbook 187

FRAFOS ABC SBC Handbook, Release 5.3

6.16.7 Performance Recommendations

In virtualized cloud environments, performance can vary significantly due to the “sharing” nature of these envi-
ronments. It is therefore advisable to choose properly dimensioned computing instances. Amazon offers several
types of “instance types” that very in various performance aspects. The instance type vary by region and change
over time. Current offering is available on the amazon web page http://aws.amazon.com/ec2/instance-types/.

For minimum density trials, the 2GB RAM T2.small instance type is sufficient. This instance allows very little
CPU capacity in short bursts. However if the allowed burst is exceeded, the virtual machine will slow down to an
extent that it stalls. Experiments with on-board conferencing have shown that a single conference with more than
three participants already brings the machine to stalling.

For predictable performance, you will need a Fixed Performance Instance (FPI) type.

In the mainstream case, when media anchoring is enabled and there is neither transcoding nor encryption taking
place, the critical parameter is the number of parallel calls (PC). Our lab measurements in this configuration have
shown the following capacity for the following instance types available on the Amazon Marketplace: (the instance
parameters are from https://aws.amazon.com/ec2/instance-types/)

Instance Type PC vCPU Mem (GiB) Networking Performance Notes
m3.medium 180 1 3.75 Moderate CPU-constrained
m4.large 372 2 8 Moderate network-constrained

In the less usual case that SIP is processed without RTP, number of call attempts becomes the critical parameters.
This can be the case when the SBC is used as a signaling-only load-balancer. Then choosing a CPU-strong
instance type makes sense. Our tests have shown that the m3.xlarge instance type can deliver 40 Calls Per Second
signaling rate, c3.8xlarge delivers about 500 CPS.

Note that OS-reported CPU-load values may be misleading on virtualized machines. CPU time may be “stolen”
by virtualization hypervisor and system tools may or may not accurately report the status. The more accurate
method to determine actual utilization of the virtual instances is CloudWatch. We recommend that CloudWatch-
observed CPU utilization shall not exceed 80% – if deployed in an Elastic Cluster, this should be the threshold
value triggering autoscaling cluster growth.

6.17 Template parameters

When configuring multiple SBC nodes, it might be needed to use different value in a rule or config variable for
certain nodes or config groups. Template parameters can be referenced in various configuration parameters and
thus allow for building different values for specific nodes or complete config groups. Template parameters are
referenced by their names enclosed by a percent characters (“%”). For example: %my_param%. Each instance
of a template parameter is replaced by its value when the configuration for a specific node is generated.

6.17.1 Definition of Template Parameter

There two ways to define new template parameter:

6.17. Template parameters 188

http://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

FRAFOS ABC SBC Handbook, Release 5.3

Define parameter directly in input field

Just enter its name enclosed by “%” characters into any input field allowing template parameters and click on the
‘Create’ link.

If a template parameter needs to be used in a drop-down or checkbox field in the GUI, just simply click on the
pencil icon next to the input field. It allows for entering free form text into the input field.

As of now the template parameters are supported in Rules, Global Config and in interfaces/node TLS profile
assignment.

Define parameters on the “Cluster config parameters” screen

The screen located at “Config->Define cluster config parameters” lists all the defined parameters. The screen
allows for creating new parameters as well.

6.17.2 Set specific values for Template Parameters

Once the parameters are defined, their value can be customized per node or config group on the “System -> Config
Groups” screen.

6.17. Template parameters 189

FRAFOS ABC SBC Handbook, Release 5.3

If the value for a defined parameter is not customized, its default value is used. Otherwise it is replaced by the
config group value or node value (node specific value takes precedence over config group value).

6.17. Template parameters 190

Chapter 7

ABC SBC System administration

This Section describes the administrative tool available on the ABC SBC. There is also the CLI reference, see
Command Line Reference.

7.1 User Management

There are two ways how to administer User Accounts and granular access control for the ABC SBC: using GUI
and using CLI. The primary method is via GUI, the CLI method is restricted in functionality. Both methods are
described in the following subsections.

In opposite of other SBC configuration the changes in user accounts take immediate effect. They do not require
activation of SBC configuration.

The access control concept is based on the notion of group membership. Groups define at a granular level per-
missions to perform specific actions, such as GUI access, viewing and/or modifying the ABC SBC topology,
monitoring various aspects of the ABC SBC, accessing RPC, firewall administration, etc.

A user gains all associated privileges by being assigned to a group. A user can be member of multiple groups.

The system comes with preconfigured user accounts as described in the Section Default User Accounts.

7.1.1 GUI User Management

Access to the administrative GUI can be managed using User Management (menu: “CCM → Users“) and Group
Management (menu: “CCM → Groups“).

User Management allows to add, delete and modify users – their passwords and group membership.

Group Management allows to enable/disable the respective permissions for a group. Once set and applied, it
applies to all group members.

191

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 1: Example: Group Management

7.1.2 CLI User Management

The CLI User management permits to create new users and assign them to a group. This subsection lists available
commands.

To add a new user, use the CLI the following way:

% sbc-add-user '--password=DoyoulikeH.323?' admin

The new user comes without any privileges and must be assigned to a group. To assign the new user to the
administrative group with all permissions use the following command:

% sbc-add-user admin SBCadmins

To unlock locked account due to unsuccessful login attempts use this command:

% sbc-user-passwd -u admin

Additional commands include:

• sbc-del-user to delete a user

• sbc-list-groups to show existing user groups

• sbc-list-users to show existing users

• sbc-user-passwd to change a user’s password

7.1. User Management 192

FRAFOS ABC SBC Handbook, Release 5.3

7.2 Server Administration

If a maintenance of the server running ABC SBC is needed, it is possible to shutdown the container from the GUI.
There can be following buttons on Administration screen, accessible using the “System → Administration“ link:

• Shutdown: performs soft shutdown of the container.

• Force HA offline: displayed only if node is running as HA pair, it puts forcibly the node into HA FAULT
mode. In this mode the HA resources (VIP addresses, routes) and signaling application are stopped on the
node, and should be moved to the other node which becomes new HA MASTER (under the condition that
the other node is up.) It can be used when upgrading ABC SBC, to make sure the node being upgraded is not
processing traffic. The same can be achieved also from command line using the “sbc-ha-offline” command
on the specific node.

• Un-force HA offline: displayed only if node is running as HA pair, reverts the forcibly set HA FAULT mode
that was set using “Force HA offline”, meaning it puts the node back to normal mode, in which a node
can be either HA BACKUP or MASTER depending on negotiation with the other node. The same can be
achieved also from command line using the “sbc-ha-online” command on the specific node.

• Mgmt console: open SSH connection to the server. The SSH connection is opened by xterminator user from
CCM to root user on SBC. So if you need to setup automatic login using SSH keys, just put SSH public key
of xterminator user on CCM to the SBC nodes. SSH is looking for the keys in /data/sbc/xterminator/.ssh
on CCM and in /data/root/.ssh on SBC. Note: This functionality requires SSH application to be enabled on
one of SBC interfaces. By default, the SSH is disabled.

• Enable maintenance mode: If the “maintenance mode” is activated, the SBC answers 503 to any request.
The maintenance mode can also be enabled from command line. See Maintenance mode for more details.

• Disable maintenance mode: Once “maintenance mode” is disabled, the SBC starts operate normally again.
The maintenance mode can also be disabled from command line. See Maintenance mode for more details.

Note: Current HA status can be checked either from “System status” screen or using “sbc-ha-status” command
line command on the specific node.

7.3 Backup and Restore Operations

7.3.1 ABC SBC Configuration Management

The ABC SBC configuration is stored in a local MariaDB database on the configuration master node. When the
administrator applies the changes using the “Activate SBC configuration“ link, an automatic snapshot of the
configuration database is created and is labeled as „Automatic Snapshot“ in the list of available snapshots.

The SBC administrator can manually trigger the generation of the configuration DB snapshot from the GUI. When
the configuration snapshot is created, it is recommended to write a short comment to note what exactly has been
modified. Optionally also content of provisioned tables database can be included in the snapshot.

These configuration DB snapshots can be accessed using the “System → Config Management“ screen, see Fig.,
Managing the ABC SBC configuration backups. From the GUI, the administrator can create new snapshots or
change or add a comment to an already existing snapshot. To restore a saved configuration the administrator
can use the “Load config“ link of the desired configuration snapshot, or the “Load provtables“ link to load the
content of provisioned tables (if the snapshot contains it).

Snapshots may also be downloaded and uploaded from the same GUI page. The only supported format is .tar.gz.
Filename doesn’t matter is case of upload, but for usability the default file name in case of download is: sbc-
backup-<date>_<db version>_<sbc version>_<snapshot name>.tar.gz

7.2. Server Administration 193

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 2: Managing the ABC SBC configuration backups

Note: When the configuration DB backup is loaded, the configuration is NOT automatically applied. The
administrator should check if the restored configuration is the correct one and then has to manually apply it using
the “Activate SBC configuration” link.

7.3.2 ABC SBC Configuration Backup

Apart from the above configuration snapshots, it is also possible and recommended to use automatic daily ABC
SBC backups, which can be enabled under Config / Global Config / Backup tab. The following options can be set
there:

• Equivalent settings as for CCM - if enabled, the settings on this Backup tab will not be used on Sbc
nodes, but the same settings as configured for CCM node (under CCM / CCM Config / Backup page) will
be applied on Sbc nodes.

• Create daily Sbc configuration backups - this enables the daily backup.

• Include provisioned tables in daily backups - when enabled, also content of whole provisioned tables
database will be included in the daily backup. It is enabled by default and recommended.

• Number of days to keep backups - sets the retention period for the daily backups. On each backup run,
all backup files older than the specified number of days will be deleted. Use 0 to disable any automatic
removal.

• Destination directory for backups - sets the directory, to which the daily backup files will be created.
Default setting is “/data/backups”. The partition holding this directory should have enough space for the
daily backups.

• Full path to extra files or dirs to include in backup, separated by comma - it is possible to include
custom files or dirs into the backup. The paths to files or directories has to be full path. Directories will be
included recursively. It is also possible to use wildcard “*”. The path must not contain comma character.

It is highly recommended to enable the daily backups and include the backups destination directory to customer
off-server backups to external device, or at least to copy the backup files to external device after important changes
done on ABC SBC configuration, to be able to recover SBC node in case of hardware failure. Note that to minimize
external backup impact on ABC SBC performance, a solution allowing to use only idle I/O and CPU should be
used.

The daily backup files are gzipped tarball archives and contain the following data, which can be used (directly
or as a reference) when recovering ABC SBC configuration: the main ABC SBC configuration database dump

7.3. Backup and Restore Operations 194

FRAFOS ABC SBC Handbook, Release 5.3

(backups from master node), optionally also whole provisioned tables database dump, versions of important RPM
packages installed, local configuration files templates (if existing), system network interfaces configuration files,
system hostname, system hosts file, MariaDB server configuration file, node UUID info, optionally also root user
SSH authorized keys files.

7.3.3 ABC SBC Recovery Procedure

In case ABC SBC server dies, it is possible to recover it using the following steps. In case more ABC SBC nodes
are used, this procedure differs depending on if recovering main configuration master CCM node or not.

Steps to be done when recovering configuration master CCM node:

• Locate latest ABC SBC backup file from the daily ABC SBC backups.

• If needed, prepare new server to host container(s), check system network interfaces, routes, hostname. Pay
attention e.g. to possibly changed system interface names.

• Install CCM container, following normal installation steps, see Sec. Installation Procedure. Use the same
major release line (like 5.0.x) that was there before.

• Restore ABC SBC configuration from the backup, either using gui or by calling the following command,
where the <backupfile> is the daily backup gzipped tarball file.

% sbc-restore --rest-all --bckfile <backupfile>

• Access ABC SBC administration GUI and check the restored configuration.

• Activate the configuration using “Activate Sbc configuration” link, which is available at bottom of Overview
GUI page.

• Check if the ABC SBC node(s) pulled new configuration using Monitoring / System status.

Steps to be done when recovering a node not being configuration master, where the configuration master node is
still working:

• If needed, prepare new server to host container(s), check system network interfaces, routes, hostname. Pay
attention e.g. to possibly changed system interface names.

• Install ABC SBC container, following normal installation steps, see Sec. Installation Procedure. Use the
same major release line (like 5.0.x) that was there before.

• Perform only the “sbc-init-config” initial configuration steps, provide existing configuration master node
address. Important: when performing the initial configuration, it is highly recommended to provide the
node UUID that was used previously on the node being recovered. It can be found under “Details” of the
node on “System status” page or on “Nodes” page under “System” menu on ABC SBC config master GUI.
If the previous node UUID is not provided, the node can be still recovered, but in case there was some
configuration specific for that node (like system interfaces assigned to that particular node), it will have to
be fixed to apply to newly created node in GUI.

• Access ABC SBC administration GUI on configuration master CCM node and check configuration. In case
system interfaces names differ on the new server, update the logical to system interfaces mapping under
System / Interfaces.

• Activate the configuration using “Activate Sbc configuration” link on configuration master node, which is
available at bottom of Overview GUI page.

• Check if the recovered node pulled new configuration using Monitoring / System status on configuration
master node GUI.

7.3. Backup and Restore Operations 195

FRAFOS ABC SBC Handbook, Release 5.3

7.3.4 Manual Backup of the Complete SBC Configuration

It is also possible to manually backup the important files:

• SBC database: administrator can manually create a full SBC configuration backup using ``sbc-
backup`` command which creates a backup files into ``/data/sbc/configs`` directory, where also
automatic DB backups are stored.

The following command line options can be used:

% --prov

Optionally also content of provisioned tables db can be included.

% --comment <comment>

A backup comment can be specified.

% --bckfile

If used, the backup files will be put also to gzipped tarball. Filename will be automatically generated from date,
version and comment.

% --bckdir <dir>

Specifies the directory where to save the backup file, if –bckfile option is used. Defaults to /data/backups.

% --filename <file>

If used together with –bckfile, save the backup under specified full file pathname instead of automatically gener-
ated name.

% --remove

If the –bckfile option is used, by default the backup files are left also in the default directory (/data/sbc/configs/).
When this option is used, they will be deleted from that directory after creating the gzipped tarball file.

% --incl-ssh

If used, root user authorized keys will be included in the backup too.

% --incl-extra

If used, extra custom files or directories will be added to the backup. The extra files or dirs can be listed using
Global Config setting under Config / Global Config / Backup tab, using full paths, with separating more fields by
comma. It is possible to use wildcard “*”. There is a limitation that the path cannot contain comma character.

% --incl-system

Enables inclusion of system stuff - hostname, hosts and root user ssh authorized keys and password.

% --incl-all

Enables inclusion of all provisioned tables, system and ssh settings and keys at once.

% --excl-tls

Do not backup TLS profiles. This option can be used only when creating backup of config master node.

% --incl-dbsnaps

Include also configuration database snapshots. This can be used only on config master node.

7.3. Backup and Restore Operations 196

FRAFOS ABC SBC Handbook, Release 5.3

% --quiet

Print only warnings and errors, no info messages.

• CDRs: the customer’s billing system should regularly download CDRs generated by the SBC which are
stored on the SBC for 93 days by default. CDRs are stored to the “/data/cdr” directory.

• Logs: log files are stored in “/var/log/frafos“ directory

• Traffic logs: traffic logs created by the “Log received traffic“ action are stored in the “/data/traffic_log“
location.

• Recording files: recording files are stored in the “/data/recordings“ location.

7.3.5 Manual Restore of the Complete SBC Configuration

For manual backup restore, the command “sbc-restore” can be used. Be careful when using it, as it can overwrite
also various system files. The following options can be used:

% --bckdir <dir>

The backup from specified directory will be restored.

% --bckfile <filename>

The backup from specified backup gzipped tarball file will be restored.

% --prov

Restore also provisioned tables, if those are included in the backup.

% --provonly

Restore only provisioned tables, do not restore the main SBC configuration.

% --rest-ssh

Restore ssh root user authorized keys, if present in the backup.

% --rest-sysfiles

Restore system files /etc/hostname and /etc/hosts. Note that it just restores the files, does not change current
hostname.

% --rest-system

Restore all system files (ssh root user authorized keys and password, hostname, hosts). Use with caution.

% --rest-sbc

Restore all Sbc files (provisioned tables, config database snapshots etc).

% --rest-sbcpull

Restore Sbc config pull or push and related config files, including node UUID and local config templates. The Sbc
config pull configuration is the info that was initially entered using sbc-init-config command. If tls certificate or
CA certificate is used for the config pull or push, it is restored too.

% --rest-dbsnaps

Restore config database snapshots, if included in the backup tarball. Can be used only on config master and only
when restoring from tarball.

7.3. Backup and Restore Operations 197

FRAFOS ABC SBC Handbook, Release 5.3

% --rest-extra

Restore extra custom files or directories, if included in the backup. Note that while restoring the extra files, the
file permissions and ownership are preserved, but in case the directories for the files are missing and have to be
re-created while restoring, the directories permissions and ownership are not preserved.

% --rest-all

Restore everything included in backup (Sbc config, provisioned tables, ssh, system, sbc pull/push config).

% --excl-tls

Do not restore TLS profiles, if those are included in the backup.

% --quiet

Print only warnings and errors, do not print info messages.

% --rootfs <path>

This is low-level option allowing to run the sbc-restore command e.g. on container instance which is stopped
and the Sbc filesystem is mounted to some directory of the host system. The provided path should point to the
directory where the Sbc filesystem is mounted. The restore operations will just overwrite files but skip all steps
that would require running system.

7.4 ABC Monitor Backup and Restore Operations

7.4.1 ABC Monitor Configuration Backup

A backup of the ABC Monitor main configuration files can be created from command line using “abc-monitor-
backup-config” command.

By default, the file name of the backup is created automatically using current date and time and the file is saved to
“/data/backups/configs” directory.

Note: starting with 5.0 release, the backup file is a gzipped tarball, holding the main ABC Monitor config files
inside. In pre 5.0 releases, the backup file format was just plain JSON file. It is still supported to restore the older
format on >= 5.0 release.

The configuration backup contains only ABC Monitor application settings: main “monitor.json” and “monitor-
layout.json” config files, and gui access credentials “htpasswd” file. It does not contain any system settings (like
hostname, network interfaces settings and similar).

The following options can be used:

% --file <filename>

Specify full path of the file to which the configuration backup should be saved. If not used, the file name is created
automatically and default directory used.

% --quiet

Do not write any info messages. If used, only errors are written, plus a message like the following: “Config backup
saved to: /data/backups/configs/monitor-2020-01-16_14-54-18.tgz”.

7.4. ABC Monitor Backup and Restore Operations 198

FRAFOS ABC SBC Handbook, Release 5.3

7.4.2 ABC Monitor Configuration Restore

A backup of the ABC Monitor main configuration can be restored from command line using “abc-monitor-restore-
config” command. It checks the configuration file, restores it as the main config file and optionally also activates
the new configuration.

The following options can be used:

% --file <filename>

Sets full path to the file with the ABC Monitor configuration backup to be restored. This option is mandatory.

% --noactiv

By default, the restored ABC Monitor config is activated, meaning that services which are affected by the new
config are restarted. If this option is used, the config backup is restored but no activate done. Admin can review
the restored config in ABC Monitor GUI and use Save from there to activate it.

% --quiet

Do not write any info messages. If used, only errors are written.

7.5 How to setup a Semi-redundant CCM on ABC SBC

This section describes steps needed to setup a “semi-redundant” cluster config master (CCM) node for Frafos
ABC SBC.

With current ABC SBC release, there is no official support for redundant CCM node. But with help of this
document, a backup CCM node plus automatic transfer of configuration backup to it can be set up, which will be
ready to take over the role of cluster config master for SBC nodes in case of main CCM node failure.

Note: the official full support for geo-redundant CCM is planned for future ABC SBC release.

We refer here to the main active CCM node as “primary CCM” and to the backup node as “backup CCM”.

The procedure is based on standard ABC SBC backup / restore using configuration snapshots, as described in
ABC SBC handbook Sec. Backup and Restore Operations. Please refer to that for details.

These steps assume both SBC and CCM nodes deployment via systemd based containers, but the procedure can
be used on standard SBC installation as well, the SSH port numbers need to be updated according to particular
customer setup configuration.

Note that the switch to backup CCM still requires manual intervention.

7.5.1 Setup primary CCM node

Start and configure the primary CCM node the standard way.

After initial configuration is done, note the primary CCM node “node UUID” value, which can be found on GUI
“System” / “Nodes” screen, value from the row for the CCM node itself.

7.5. How to setup a Semi-redundant CCM on ABC SBC 199

FRAFOS ABC SBC Handbook, Release 5.3

7.5.2 Setup backup CCM node

Start clean fresh CCM container for the backup CCM (on some other physical host), using the same SBC release
and the same installation way as the primary CCM, but do not configure anything in GUI.

7.5.3 Configure configuration snapshot backups

On primary CCM GUI, navigate to “Config” / “Global config” screen, and there select the “Backup” tab.

Enable the “Create daily Sbc configuration backups” option.

Make sure that also “Include provisioned tables in daily backups” option is enabled.

The option “Destination directory for backups” sets directory, to which the daily configuration snapshots are saved.
Default directory is “/data/backups” local directory on the primary CCM node. It can be also possibly pointed to a
specific directory which is mounted externally to the primary CCM node, e.g. from external network share device
or via NFS.

Activate new configuration from CCM GUI.

Optional step: in case the backup done daily would be too low frequency, it is possible to change that according to
customer need, e.g. to be done every hour. The command which performs the daily backup is “sbc-daily-backup”
and by default it gets started from “/etc/cron.daily/sbc-backup”. This can be customized by administrator e.g. by
moving the file to cron daily directory, to make it run every hour:

% mv /etc/cron.daily/sbc-backup /etc/cron.hourly/

But please consider the fact that the configuration snapshots contain also all provisioned tables data, so they can be
big. Also the change like this, to set more frequent backups, won’t survive possible CCM container replacement
with newer one.

7.5.4 Setup configuration backups transfer to backup CCM node

The configuration snapshot backup files need to be transferred from the primary CCM node to some other safe
location, to ensure they do not get lost in case of primary CCM node failure, or can be transferred directly to the
backup CCM node.

The recommended way is to manage the files transfer from other external customer server, not from the primary
CCM node itself, to avoid loosing that functionality when e.g CCM container is replaced with newer one.

Depending on customer deployment, possible ways to achieve this are like:

• If the daily backups on primary CCM node are created to some externally mounted directory, customer
can setup some regular way of copying those files to the backup CCM node “/data/backups” directory, e.g.
using “scp” secure shell copy, or “rsync” program. In this case please also pay attention to available space
on target location on backup CCM and possibly delete old files (rsync option “--delete” can be used
for that).

• Another option is that the latest configuration backup can be copied from external location to the backup
CCM only when primary CCM failure happens.

• If the configuration snapshot backups are created only to “/data/backups” local directory on primary CCM, it
is possible to setup e.g. “rsync” command to be run periodically, which will transfer whole “/data/backups”
directory content in a efficient way from primary CCM node to backup CCM node directly, using SSH as
underlying protocol. The transfer can be set up to be initiated either from primary CCM side or from backup
CCM side. We recommend to initiate it from backup CCM side.

Example of rsync command to synchronize the configuration backups (assumes ssh on port 24 on primary CCM
node, 192.168.0.1 is the IP address of the primary CCM), to be run on backup CCM node:

% rsync --delete -r -e 'ssh -p 24' root@192.168.0.1:/data/backups /data/

7.5. How to setup a Semi-redundant CCM on ABC SBC 200

FRAFOS ABC SBC Handbook, Release 5.3

This command can be run periodically e.g. using system “cron” service, by creating a file like “/etc/cron.d/rsync”
with the following content on the backup CCM node, to make it run every hour (at 10 minutes past every hour):

10 * * * * root rsync --delete -r -e 'ssh -p 24' root@192.168.0.1:/data/backups /
→˓data/

Note: if ssh is being used as underlying protocol for rsync, it is possible to make it work from backup CCM
to primary CCM without passphrase using the following commands on the backup CCM (192.168.0.1 is the IP
address of primary CCM):

% ssh-keygen
% ssh-copy-id -p 24 root@192.168.0.1

After the setup of configuration backups transfer is done, make sure that the backup files are really being trans-
ferred automatically to “/data/backups” directory on the backup CCM node.

Check also the backup size and available space, and tune global config setting “Number of days to keep backups”
on primary CCM GUI (Backups tab). Note that if using the rsync command (with the “--delete” option), the
files deleted on primary CCM node directory will be also deleted automatically by rsync from the backup CCM
node directory.

7.5.5 Steps to make the backup CCM available in case of primary CCM node
failure

In case of primary CCM node failure perform the following steps:

• Find the latest configuration backup file that was transferred to backup CCM directory “/data/backups”, or
if using external backup location copy it to backup CCM “/data/backups” directory.

• Restore the backup using command like this on the backup CCM:

% sbc-restore --prov --rest-ver --bckfile
/data/backups/sbc-backup-2020-10-22_11-36-50_42001027_4.2.22-77_daily_backup.tar.

→˓gz

Note: if system stuff like ssh keys or hostname was included in the backup too, and restore of that is needed, add
also the following option:

--rest-system

• Access the backup CCM GUI and review the loaded configuration.

• Activate the new configuration from backup CCM GUI, to make it available for SBC nodes.

7.5.6 Steps to be done on SBC nodes to start using new CCM

Once the backup CCM is available and configuration snapshot backup was loaded on it, and if the backup CCM
uses different IP address from the previous main CCM, re-configure all SBC nodes to use new CCM address using
the following command on each of them:

% sbc-init-config

Alternatively, a DNS hostname can be used as CCM node address on all SBC nodes. In that case it is recommended
to use a DNS record with short TTL value, which allows then easy central change of the CCM address just by
updating the DNS record, without need to update it on all SBC nodes. (Note: but avoid using more A records
under one DNS name, pointing to more IP addresses).

7.5. How to setup a Semi-redundant CCM on ABC SBC 201

FRAFOS ABC SBC Handbook, Release 5.3

7.5.7 Additional steps and checks

Access the backup CCM GUI “Monitoring” / “System status” screen. Check if all SBC nodes have pulled new
configuration from the new CCM.

There may be a duplicate “System status” record shown for the CCM node itself (coming from the node UUID
update done initially), but this older CCM node status (which can be identified by the “Last report” column) can
be safely ignored, or deleted if using newer CCM which allows that.

Note: in specific case, when the configuration snapshot that was restored on backup CCM was not the latest one,
and if the “sbc-init-config” step was not done on Sbc nodes, the nodes will not pull the configuration from the
backup CCM after switch to it automatically, because the “configuration version” number used to detect new
configuration will be lower on the backup CCM than what the nodes already expect. This should not happen
if following this procedure correctly and latest configuration snapshot was restored on the backup CCM. But in
case it happens, which can be seen on backup CCM GUI screen “Monitoring” / “System status” by the nodes
configuration versions higher than the “Latest config version”, it is possible to manually forcibly increase the
configuration version of configurations exported from CCM using “sbc-set-confversion <version>” command.

7.6 Upgrade Procedure

FRAFOS regularly releases a new version of ABC SBC. New features, modifications and bug fixes are described
in a “Release notes” section of SBC handbook for every new release.

If ABC SBC is deployed in the non-HA mode then it is expected a service disruption during the upgrade process.
For that reason it is strongly recommended to perform upgrade in the service maintenance window.

If HA is used, before the upgrade is started, both cluster nodes have to be online and all required services run-
ning, see Sec. Command-line SBC Process Management for more details. The administrator should also create a
configuration snapshot, see Sec. Backup and Restore Operations.

Please upgrade the CCM node first, and continue with SBC node(s) upgrade only after new CCM is verified to be
correctly functional.

The following upgrade procedure applies to ABC SBC container installation, for ABC Monitor upgrade see ABC
Monitor Upgrade Procedure section.

7.6.1 Container ABC SBC upgrade

When the ABC SBC is deployed as a container, there is no “online upgrade” of the existing (and running) con-
tainer, but the whole container is replaced by newer version.

It is highly recommended to use separate directory “mounted” to the container for “/data” path, as described in the
container install section, which keeps data that is expected to be persistent and makes the container replacement
easier. If it is not used, it is possible to manually copy or move the /data content of old container after stopping it
to new container before starting it for the first time. If doing so, please pay attention to keeping files permissions
and ownership.

When replacing container, please follow these steps:

• Create a ABC SBC backup. Note: the backup file is needed when replacing CCM node container, but might
be needed also in case of troubleshooting possible issues, so create it on both CCM and SBC nodes. Use
command like this on container:

% sbc-backup --incl-all --bckfile

It will create backup under “/data/backups/” directory by default. Note the created backup tarball filename.

• Stop the container.

• Backup directory with the old container, by renaming the directory like:

7.6. Upgrade Procedure 202

FRAFOS ABC SBC Handbook, Release 5.3

% cd /var/lib/machines
% mv <name> <name_backup>`

• Create new directory (using the same name as before) and unpack the new container image to it, similar
way like listed also in the install section - example:

% mkdir /var/lib/machines/<name>
% tar --xattrs -p --numeric-owner -C /var/lib/machines/<name> \
% -xzf frafos-abc-sbc-4-6-1-481.tgz

• If the externally mounted “/data” persistent directory is not used, as mentioned above, copy or move content
of old container “/data” sub-directory to new container “/data” sub-directory, example:

% cp -a /var/lib/machines/<name_backup>/data/* /var/lib/machines/<name>/data/

• Start the new container.

Note: Using the same name for the directory means that SBC hostname visible in the GUI will not change. Of
course it is also possible to keep the original container’s directory name and unpack the new container into a new
folder. In that case the SBC hostname which is used in SBC GUI will change.

If the container is CCM node:

• Access the CCM GUI, review the configuration and activate it.

If the container is SBC node:

• If persistent /data directory is not used, call the following command to perform the initial config:

% sbc-init-config

• The SBC should automatically pull configuration from the CCM node.

Access the CCM node GUI and check Monitoring / System status page, check for any errors reported by SBC
nodes.

7.6.2 ABC Monitor Upgrade Procedure

Container ABC Monitor

The ABC Monitor deployed as container can be replaced with newer version.

The new ABC Monitor can be either configured again via GUI, or the old configuration is used automatically in
persistent “/data” is used, or the configuration can be transferred from old container to new container. Please refer
to ABC Monitor Backup and Restore Operations section for details about the configuration backup and restore.
The recommended way is to use persistent “/data”.

The old events data can survive container replacement with newer version, if the “/data” directory of the container
is either mounted externally (and not erased while setting up the new container), or if the “/data” directory content
is copied or moved (while keeping ownership and access rights) from old stopped container to new unpacked
container, before starting it for the first time.

Note: the “mounting” of persistent host directory to the “/data” directory of the container can be achieved using
"--bind" option of “systemd-nspawn” command used to start the container.

Note: older ABC Monitor releases up to 4.4 used different location “/var/lib/elasticsearch” for storing the events
data, while starting with release 4.5 the directory was moved to “/data/elasticsearch” to allow possible persistence
across container replacement, if the whole “/data” directory is mounted externally to the container.

Note 2: If data format has changed, some charts or Monitor function maybe will not work correctly with old data
format.

7.6. Upgrade Procedure 203

FRAFOS ABC SBC Handbook, Release 5.3

7.7 Migration from 4.5/4.6 to 5.0

The migration from 4.x ABC SBC product line requires some additional work. First of all it is necessary to prepare
one or more host servers which will be serving ABC SBC containers. As a minimum installation CCM and SBC
containers need to be deployed. It is possible to use a single server to host both containers or to use separate
servers.

In case of HA deployment, two servers are required as it would not make sense to host backup ABC SBC node on
the same host as a master.

Frafos recommends to use Debian 12 stable as OS for host server however it should be possible to use any other
recent Linux OS.

It is also possible to re-use the existing CentOS 7 server as a host server however we don’t recommend this as
CentOS 7 is end of life and is no longer supported.

The following upgrade procedure applies to ABC SBC installation, for ABC Monitor upgrade see ABC Monitor
migration procedure section.

7.7.1 ABC SBC migration procedure

The migration is very similar to upgrade procedure described in Container ABC SBC upgrade. Please refer to
upgrade section for more details.

First of all, it is necessary to do the backup of existing servers. The backup of CCM is mandatory, backup of SBC
is an optional but recommended:

% sbc-backup --incl-all --bckfile

Copy all backup files to secure location, to have them ready, if needed.

Now deploy a new CCM and SBC container(s) as described in XXX. Once ready start all of them. Navigate to
the CCM GUI and on the initial login screen use the upload option to upload a backup file which was generated
on 4.x CCM.

Fig. 3: Initial GUI login screen

Once the configuration is restored, you should see the following message in the pop-up window:

% Sbc configuration restore finished.

7.7. Migration from 4.5/4.6 to 5.0 204

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 4: Successful configuration restore

Close the pop-up windows and navigate to the login screen. Use you login credentials from your 4.x installation.
Once logged into the GUI, there is a warning about pending configuration changes which need to be activated.
At this point there is no active configuration which could be downloaded by SBC nodes. Before configuration
activation please double check all your configuration and do necessary changes if they are required. Please pay
attention to system interfaces and applications configured on interfaces. Problematic parts can be:

• different system interfaces names as you used on your 4.x setup,

• SSH configuration,

• all hard coded IP addresses which might now be different (for interfaces, interface applications, routing
rules or A/C rules),

• all 4.x CCM related interfaces can be removed as they are no longer needed in 5.0,

• there is no XMI interface in 5.0.

If your configuration is OK, then activate it. Once configuration was activated, it is necessary to run sbc-init-config
on every ABC SBC node. This must be done from container console. In order to do that, SSH to the host server,
there login into the ABC SBC container:

% machinectl shell <container_name>

Now navigate to the System –> Nodes, click on info button for SBC node which you plan to configure. Check
that the CCM IP address is correct one and if so click on “Copy initial config to clipboard” button and paste this
command into the container console. Execute the command. Now the SBC node should fetch the configuration
from the CCM and activate it automatically.

7.7. Migration from 4.5/4.6 to 5.0 205

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 5: Node info pop-up

The GUI part can be skipped and you can execute the “sbc-init-config” directly but then please provide correct
node UUID once the script asks about it.

Repeat this for every SBC node which you would like to restore.

Expected things which might be surprising

In the 5.0 there is no default root password set for containers. Also SSH is disabled by default. This can cause
some unexpected surprises as during migration from 4.x to 5.0 we do not migrate any system accounts.

If you were using SSH, you will not be able to use it after migration until you create all necessary accounts again
or you upload the SSH authorized_keys file manually into the container. Please note if you create some new
system user accounts inside the container then those accounts will be lost during next container replacement while
upgrading to a newer version.

During the migration only configuration related information is transferred. However there might be need to migrate
also other files like CDRs, audio recordings, traffic logs, prompts. If this is the case, please, transfer all necessary
files from 4.x server to 5.0 manually. There is no script which would do this automatically. All above mention
data are stored in /data partition in corresponding directories. Please note, starting 5.0 CDRs were moved to /data
partition as well.

Table 1: Data directories mapping
Data type 4.x location 5.0 location
CDR /var/log/frafos/cdr /data/cdr
recordings /data/recordings /data/recordings
traffic logs /data/traffic_log /data/traffic_log
prompts /data/prompts /data/prompts
pcaps /data/pcap /data/pcap

7.7. Migration from 4.5/4.6 to 5.0 206

FRAFOS ABC SBC Handbook, Release 5.3

7.7.2 ABC Monitor migration procedure

The ABC Monitor can be deployed on the same host as CCM or SBC host server however be sure you meet
minimum HW requirements for ABC Monitor deployment.

First of all it is necessary to do the configuration backup of 4.x ABC Monitor server. In order to do that execute:

% abc-monitor-backup-config

Details about this procedure can be found in ABC Monitor Backup and Restore Operations section. Once backup
file was created, transfer it to the newly deployed 5.0 ABC Monitor container. There execute:

% abc-monitor-restore-config --file <filename>

This procedure restore just the ABC Monitor configuration but it does not affect any other data. The migration of
existing data (events) is not supported.

In case it is necessary to keep the old data and migrate them into 5.0, please contact Frafos support.

Expected things which might be surprising

In the 5.0 there is no default root password set for containers. Also SSH is disabled by default. This can cause
some unexpected surprises as during migration from 4.x to 5.0 we do not migrate any system accounts.

If you were using SSH, you will not be able to use it after migration until you create all necessary accounts again
or you upload the SSH authorized_keys file manually into the container. Please note if you create some new
system user accounts inside the container then those accounts will be lost during next container replacement while
upgrading to a newer version.

7.8 SBC Dimensioning and Performance Tuning

This section provides background information on typical traffic patterns, its performance implications, and per-
formance tuning possibilities. This information can help to make a more educated estimate than provided in
Section Capacity planning. However, confidence can only be achieved by measurement of the target ABC SBC
configuration against actual traffic on the used hardware.

The reference hardware we used is Sun SunFire X4170 with the following configuration:

• 2 x Intel Xeon X5570 @ 2.93GHz CPUs, each 4 cores with hyper-threading enabled

• 2 x on-board Intel Gigabit Ethernet adapter

• 8 GB RAM

As an alternative, we measured on a Dell R410 with the following configuration:

• 2 x 4-core Intel X5550 CPU 2.6GHz

• 2 x Broadcom NetXtreme II BCM5716, 8 IRQs/queues

• 12 GB RAM

The alternative results are shown in parenthesis.

On the reference hardware, the maximum performance limits of the ABC SBC have been measured as follows:

• 5000 parallel G.711 calls with media anchoring (3600)

• down by factor of five when transcoding is used,

• call rate of 480 calls per second, without media anchoring

• registration rate of 9900 registrations per second.

7.8. SBC Dimensioning and Performance Tuning 207

FRAFOS ABC SBC Handbook, Release 5.3

Actual use-cases may have significantly different traffic characteristics and therefore the resulting performance
may be driven by different limits. In this section we look at the most typical cases: a trunking case with and
without transcoding and a residential deployment scenario. All the use-cases assume a single-pass SBC traversal
for both SIP and RTP. In the next section, we also summarize the critical configuration aspects that need to be
checked when tuning the system for the highest performance.

7.8.1 Trunking Use Case

This case is characterized by handling many calls, both signaling and media, from rather few sources. SIP traffic is
not NATed and does not include REGISTER transactions. In this case, the most demanded functionality is media
forwarding and the most significant bottleneck is the packet rate of the Ethernet card. Small packets as common
with VoIP saturate Ethernet card nominal capacity much earlier than large HTTP packets would. A reasonable
Ethernet card shall deliver at least 400 thousand packets per second in each TX and RX direction.

With such a packet rate, the following number of parallel calls can be achieved for the respective number of calls:

codec/packetisation number of calls
G.711/20ms 5,000 (3,600)
G.729 6,000 (4,680)

7.8.2 Trunking with Transcoding

Transcoding is typically deployed as an additional feature in the trunking case. However, as transcoding is compu-
tationally expensive the bottleneck shifts to CPU. The following numbers are achievable on the reference platform:

transcoding number of calls
G.711-to-G.729 1,000 (750)

7.8.3 Traffic Estimates for Residential VoIP

With residential VoIP, the deployment sees many challenges: the clients are connecting from unmanaged networks
over NATs and variety of SIP client types causes interoperability issues. Addressing NAT traversal by enforcing
media anchoring (see Section Media Anchoring (RTP Relay)) and frequent re-registration (Section Registration
Handling Configuration Options) causes substantial increase in overhead. The ABC SBC keeps the heavy SIP
traffic off the infrastructure behind it, however the bandwidth impact on the incoming side must be considered.

Without frequent re-registrations NAT address bindings would expire and SIP devices behind NATs would loose
incoming traffic. While other more light-weight methods (STUN, CRLF) exist, re-registrations are safe in that
they work with every SIP client and create traffic keeping any NAT bindings alive. The penalty is quite high
resource consumption. The “background SIP traffic” is even higher in public SIP services than one could infer
from baseline calculation based on re-registration period. Alone use of digest authentication doubles number of
REGISTER transactions, many clients send additional traffic to check voicemail status (SUBSCRIBE), announce
their online status (PUBLISH), and get over NATs on their own (OPTIONS). As a result, the number of SIP
request roughly quadruples against base-line.

The following table summarized empirical impact of driving re-registration traffic to 180 seconds period for pop-
ulation of 1000 subscribers:

Rate per second (incoming interface)
REGISTER requests (w and w/o digest) 20 pps
all requests 40 pps
all requests and answers 80 pps
bandwidth (TX and RX about 1:1) 380 kbps

This load is noticeable both in terms of bandwidth and CPU impact.

7.8. SBC Dimensioning and Performance Tuning 208

FRAFOS ABC SBC Handbook, Release 5.3

The following table present impact of media-relay on bandwidth for 1000 subscribers in peak periods. The under-
lying assumption is that in peak periods, there is one call for every ten active subscribers.

number of subscribers 1000
parallel calls (10:1) 100
G.711 bandwidth (RX and TX) 197*2*100= 39,400 kbps
SIP bandwidth (RX and TX) 380 kbps
Total bandwidth ~40 Mbps

7.8.4 Performance Tuning

The performance of the system can be increased by proper configuration of the hardware, operating system and
the SBC. The following paragraphs list configuration suggestions that are known to bring the greatest performance
benefits.

Hardware has expectedly profound impact on system performance. With networking applications, is network
cards that shall receive particular attention. Our experience has been that Intel Ethernet cards are at least on part
with cards of other vendors and often overperform them. Note that it is necessary that the kernel is using specific
card drivers: performance of generic Ethernet drivers is noticeably lower. Hints to hardware specific configuration
option are provided in Sec. Hardware Specific Configurations.

Key card driver parameters that don’t come preconfigured with the ABC SBC are those specific to Ethernet
interfaces. If available, tune the following parameters:

• enable Receive Packet Steering

• increase coalesce and ring buffer size

• bond statically NIC RX queues to CPU cores

Furthermore, you shall also make sure that your ABC SBC configuration is not causing unnecessary load. Con-
figuration options that can considerably increase overhead are especially media relay and registration processing.
Media relay shall be avoided if not needed. If an SBC connects networks that are mutually routable, anchoring
media may be entirely unnecessary. Also in many cases, when signaling passes the SBC twice on the way in and
out, you may need to pay attention to configure the media to pass the SBC only once. Registration processing is
primarily driven by the NAT keep-alive interval. We recommend a period of 180 seconds. Shorter intervals will
not dramatically improve NAT traversal and will cost performance degradation. Longer intervals could result in
expired NAT bindings for NATs that expire too rapidly.

7.9 Removing SBC Node

Before SBC node is removed from the system, please make sure it is stopped. Then you could remove it from the
system in GUI: “System → Nodes“ screen.

Removing node in GUI just remove it from the list of nodes for which CCM generate configuration. This does not
perform any action on the node itself (like stopping it).

If alive node is removed from the system, it might re-appear again if node auto adding is enabled (see Miscella-
neous Parameters).

7.9. Removing SBC Node 209

Chapter 8

Monitoring and Troubleshooting

8.1 Overview of Monitoring and Troubleshooting Techniques

The ABC SBC and its accompanying monitoring product, ABC Monitor, are designed to provide real-time insight
into service health and user behavior for sake of troubleshooting, trending and security. Routine monitoring and
troubleshooting is a key part of a SIP service life-cycle. It is also a complex one: the amount of traffic an SBC
must handle is enormous and finding abnormal patterns in such quantity is not entirely easy. This is especially
true when the service is exposed to a larger user population and is running on the public Internet. Also varying
degree of SIP compliance of attached devices often causes unexpected behavior.

Any abnormal service patterns can have a variety of reasons including unusual traffic caused by a security attacks
or broken devices, or administrative shortcomings such as a incorrect rule-base or an under dimensioned system.
Even if an abnormal situation does not impact a SIP service as whole but only a particular user it is important to
find out what is happening.

Identifying presence and root causes of abnormal situations therefore requires solid data about the operation of
the service. Here a virtue of the ABC SBC comes in play: it produces a lot of data reporting on the status of
operation. In fact the number of bytes produced for monitoring typically exceeds the number of bytes used for the
actual SIP signaling. What may seem disproportional is the recipe for the capability to understand and keep the
status of operation smooth at any time. Good operational decisions can only be made with reliable intelligence.

In the following chapters we will discuss various methods how to monitor an ABC SBC-powered SIP service
operation.

The most detailed and therefore powerful method to monitor the operation is using the events produced by the
ABC SBC (if the event license is installed). The ABC SBC “documents” what SIP users are doing by issuing a
report called event on every important user activity: registering, unregistering, failing to authenticate, completing
a call, and so on and so forth. An administrator can even produce his own custom events. The events provide a
history of user activity which can be looked backed at and analyzed. In a way, it tries to act as secret police would:
it holds “files” on the observed subject that include an exhaustive gap-free activity history. At the same time, the
overall collection of events also provides aggregated insights into the overall service health and can be used for
example to see how the service usage varies in course of a day. The events are described in the Section Events
(optional).

The events do indeed come in a quantity that may make nailing down a problem or identifying a trend a tedious
task. Therefore the ABC Monitor is available from FRAFOS to aggregate and filter the events. Using the ABC
Monitor is documented in the section ABC Monitor (Optional). In addition to user events, the ABC Monitor also
shows the utilization of the system. If a situation requires, the ABC Monitor collects even traffic bits: SIP or even
RTP data passing the ABC SBC. This is explained in the section Diagnostics Dashboard.

The next chapter, Using SNMP for Measurements and Monitoring shows how to monitor the overall system health
using SNMP. SNMP is the industry standard for monitoring system health and is supported by many third-party
monitoring tools, both commercial and open-source. The FRAFOS ABC SBC reports various OS-related and
SIP-related counters using SNMP and can also report custom-based ones.

210

FRAFOS ABC SBC Handbook, Release 5.3

Additional diagnostic information is available directly in the SBC GUI. There is real-time GUI view of established
calls and cached registration entries described in Section Live ABC SBC Information. There is also a possibility
to review most recent traffic at IP layer as described in Section User Recent Traffic.

Additional methods for determining service status data are eventually described in the Sections Command-line
SBC Process Management and Additional Sources of Diagnostics Information.

8.2 ABC Monitor (Optional)

The ABC Monitor provides administrators with an aggregated view of user activity based on usage reporting
data collected from the ABC SBC/WebRTC gateways. This highly interactive, near real-time view can be used
for trending, analysis of both short-term and long-term use patterns, troubleshooting, auditing server policies
and identifying misconducting users. The reporting data comes using events from inside of the SBCs. This
“insider view” allows the ABC Monitor administrators to inspect SIP traffic encrypted on the way from and to the
SBCs, correlate calls “separated” by topology hiding, and report internal ABC SBC context such as traffic shaping
decisions.

If there are multiple SBCs organized in a hot-standby pair, or a cloud the ABC Monitor will collect data from all
of them and its centralized nature provides a global view of the whole system. An ABC SBC may also send its
data to two Monitors in parallel. This is useful for various organization with multiple isolated teams, easy-to-start
virtualized trials and migration scenarios.

The ABC Monitor user interface is organized in several dashboards. The opening Home Dashboard shows the most
important data in a single comprehensible page, such as shown in Figure ABC Monitor Home Dashboard. All of
the data relates to the period of time chosen in the top right corner. This page can also be sent to administrator on
a daily basis by email to report on previous 24 hours.

The data in the home dashboard is structured in several rows. The first row shows various call metrics, such as
number of completed and attempted calls, total number of minutes, etc. The second shows how frequent were
events of the various types in the observed period of time. Dark fields represent many events of a kind. In this
example we see that greylisting events were dominating at a time slot, a situation that often occurs when a SIP
scan is launched on a public SIP service.

The next two rows show history of number of parallel calls and registrations, also compared with data from
previous day shown using a thin line. In the boxes on the right hand side there are current numbers.

The last row shows number of security-related events. The timeline is divided in buckets and the number of events
relates to each of the buckets. The bucket length grows proportionally with the time window. The number on
the right-hand side shows number of security events in the most recent bucket. The number’s background color
changes with the number and is green when smaller or equal to five, orange bellow ten, and red above.

8.2. ABC Monitor (Optional) 211

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 1: ABC Monitor Home Dashboard

A snapshot of the home dashboard can be produced and sent as PDF attachment by Email every morning if a
recipient email address is configured under “Settings → Reports: e-mail address for everyday reports”.

All other dashboards are similarly organized. While they are organized along different aspects of SIP operation
and show therefore different data, the visual structure follows the same pattern. In the very top, there are filters
that allow to limit the events based on various criteria. Using the filters is described later in Chapter Using Filters.
In the mid part, there are various graphical elements showing either some aggregated values, or their history over
time. In the very bottom, there is a list of the actual events. The events can be clicked on to unfold and view all
details.

The most frequently used dashboards are the following:

• “Call Dashboard” shows history of calls, analysis of failures and QoS reports. This is helpful to identify
call trends, volumes, reasons of call failures, and troubleshooting specific calls. It provides both aggregate
view of the situation as well as the possibility to review call details. More details are shown in Chapter Calls
Dashboard.

• “Security” shows all Security events, also organized by the most active IP addresses and geo-locations.

• “Toplists” shows most active users by various metrics: call attempts, call minutes, number of short calls,
etc.

• “Exceeded Limits” helps to alert on abnormal situations, such as excessively many phone calls from a single
IP address. See Chapter Exceeded Limits Dashboards for more details.

• “Overview” holds all events relating to a user. There are really many. This is mostly useful when an
administrator begins to suspect a problem and wants to see full user’s history. Often administrators get
alerted on a user when reviewing security dashboard, toplists, or exceeded limits, set up filter for such user,
and inspect then his full event history. Additional details are shown in Chapter Overview Dashboard.

• “Connectivity CA” operates at topology layer and shows how good peering between calls from one Call
Agent to another Call Agent is. This helps to identify Call Agents with poor performance, and/or Call
Agents that have troubles making calls with each other. See Chapter Connectivity CA Dashboard.

8.2. ABC Monitor (Optional) 212

FRAFOS ABC SBC Handbook, Release 5.3

• “Registration” shows registrations: new, expired and deleted, which transport is being used, from which
part of the world are the registrations coming, and what SIP equipment is being used. This dashboard is
useful for troubleshooting SIP user’s connectivity. More information can be found in Chapter Registration
Dashboard.

There are even more dashboards that provide less aggregated data that is useful when trying to understand a
low-level problem.

• “Diagnostics” collects troubleshooting information. If an SBC administrator chose to record PCAP files,
WAV files, produce custom event, or an unusual OS situation is reported, it appears here. See Section
Diagnostics Dashboard for more information. Diagnostic events relating to layer-3 and layer-4 are separated
in “Transport” dashboard and provide useful information to detect frequent retransmissions, or various TLS
handshake failures.

• “Connectivity” is a dashboard operating at URI level that shows the most active caller-callee pairs.

• “Network Statistics” shows low-level data such as number of parallel calls, active registrations, bytes sent
and received, etc. See Section Network and Statistics Dashboard. “Realms Stats” is a subset of network
statics, broken down by realms.

• “Systems” shows how SBCs are doing in terms of memory and CPU. Useful to identify overload situations.
See Section System Dashboard.

8.2.1 Events (optional)

Note that producing events is an optional feature that requires an additional licensing option and the ABC Monitor
software.

The events collect a detailed history of user activities. With this data, it is possible to review in detail the history of
a specific user as well as the whole SIP service. The events are produced by the ABC SBC in course of processing
SIP and RTP traffic whenever some relevant action occurs: a call was attempted / established / terminated, a
bandwidth threshold was applied, etc. Administrators may also choose to generate their own custom events.

The events are keyed by SIP address and IP address so that history of specific users can be easily established.

All events include three types of fields: mandatory, type-specific and call variables.

Every event includes mandatory fields identifying which SBC reported on which activity and when (“timestamp”,
“event-type” and “sbc”). The timestamp signifies the instant of time when an event was received by the ABC
Monitor. This helps to overcome situations with multiple SBCs with unsynchronized clocks or different time-zone
and may be slightly different than SBC-recorded time. A typical time sequence of events for a call is shown in
Figure Event of Call Timelines: when an INVITE is arrived and PCAP file is recorded, “message-log” appears
instantly. “Call-attempt” event appears as soon as a positive final answer comes back. Eventually “call-stop”
appears upon receipt of a BYE from either party.

Fig. 2: Event of Call Timelines

Events relating to a SIP message include SIP addresses (“attrs.from”, “attrs.to”) and source IP address (“at-
trs.source”). Call-end events include “attrs.duration” expressing call length in seconds, whereas reg-new events

8.2. ABC Monitor (Optional) 213

FRAFOS ABC SBC Handbook, Release 5.3

show the address of a newly registered SIP device in “attrs.contact”.

Last but not least, script processing variables can be passed along with the call processing events – this can be
for example useful to “label” the events with “tags” assigned to a call during call processing, such as “domestic”,
“long-distance” or “emergency”. Some visualizations in ABC Monitor specifically require that an administrator
sets well-known variables, as shown in Figure ABC Rule for Setting a Destination Country Code by Request URI
Prefix and Setting Minute Counter Call Variable.

The ABC Monitor also enhances the events by additional fields used for security level assessment, geographical
location, QoS information, and other data used for further analysis.

The following table shows content of a call-start event that is always produced when a successful INVITE trans-
action sets up a call. Internal fields with a leading underscore in name not shown.

Field Value Comment
@timestamp 2016-03-

31T12:17:02.000Z
GMT event timestamp

@version 1 internal version number
type call-start event type
attrs.call-id 65601f8e625e0fb6484

. . .
SIP Call-ID of the call

at-
trs.dst_ca_name

pstn_gateway name of Call Agent to whom the call is forwarded

at-
trs.dst_rlm_name

sipgate name of destination realm

attrs.sbc 3e440ca4-00ee id of the reporting SBC
at-
trs.src_ca_name

users Call Agent from which the request came

at-
trs.src_rlm_name

public realm from which the request came

attrs.from sip:0000@172.27.10.114 SIP From URI
attrs.from-ua VQM 0.4 User Agent Client type
attrs.method INVITE SIP Request method – always INVITE for call-start
attrs.r-uri sip:echo@free.tel SIP Request URI
attrs.sip-code 200 Numerical code of SIP reply always 200 for call-start
attrs.sip-reason OK Human-reasonable reason phrase in SIP reply
attrs.receiver_ip 192.168.0.111 SBC’s IP address at which it received the INVITE
attrs.ruriip free.tel host part of request URI
attrs.scenario call this is a scripting variable chosen to be passed along with the

event
attrs.source 10.0.0.10 source IP address of the request
attrs.src-port 1085 source port number of the request
attrs.to sip:echo@free.tel To URI as in the INVITE request
attrs.to-ua F-PBX 2.3 Signature of the called party’s UA Server
attrs.transport udp transport protocol used for signaling
id 483B139F-56FD153E. . . internal ID. useful for correlating multiple related events

The rest of this Section is structured by the event types that the ABC SBC produces:

• Call Processing Events – these are events that describe SIP calls and are mostly used to observe user habits,
reasons for call failures, and QoS

• Registration Events – these are events that describe how SIP devices register with the SIP service. The
events show the reachability of the SIP users in time.

• Diagnostics Events – these events help to identify unusual traffic patterns, misconfiguration of the service
and other irregular situations.

• Security Events – these events report on SIP traffic which may possibly indicate attempts to compromise
security of some SIP users or the SIP service as whole

8.2. ABC Monitor (Optional) 214

sip:0000@172.27.10.114
sip:echo@free.tel
sip:echo@free.tel

FRAFOS ABC SBC Handbook, Release 5.3

Call Processing Events

These events are generated automatically at different stages of the SIP call establishment process, see Fig. SIP
call processing events.

• call-start: generated after a successful call establishment. The method is always INVITE and sip-code 200.

• call-attempt: generated after an unsuccessful attempt to establish a call due to caller canceling the call,
callee declining it, or a timeout. Failed authentication attempts are reported on in separate events. The
events always include the SIP code with which the call attempt was rejected.

• call-end: generated after an established call is terminated. They include a full report on how the call com-
pleted. The From and To event fields take the same values as call-start event – they signify who initiated the
call (and not who initiated the call termination). The event-specific fields include:

– The field “originator” specifies who caused the call termination and can take the following val-
ues: “caller-terminated”, “callee-terminated”, “call-length-terminated” (SBC terminated upon ex-
ceeding the maximum call length limit), “no-ack” (SBC terminated due to missing ACK), “rtp-
timer-terminated” (SBC terminated upon RTP inactivity), “session-timer-terminated” (SBC termi-
nated upon session timer expiration), “admin-control-terminated” (administratively terminated from
GUI), “internal-disconnect” (call terminated due to a internally transferred call), “reply” (negative re-
sponse received on an established dialog: 404, 408, 410, 416, 480, 482, 483, 484, 485, 502, 604),
“server-shutdown” (server process terminated due to a SIGUSR1 or SIGUSR2 signal), “srtp-failure”
(SRTP key negotiation failure), “internal-error” (internal error).

– The field “duration” specifies the length of call in seconds.

– The fields “rtp-stats-a” and “rtp-stats-b” represent the RTP statistics for the media streams on each
call leg. Each call leg contain one or more media streams, each of which offer incoming and outgoing
information.

The following table shows the information for the incoming media streams.

Field Value Comment
ssrc 413934793 incoming SSRC value
src_ip 192.168.0.155 source IP address
src_port 37454 source port
dst_ip 192.168.0.155 destination IP addres
dst_port 46920 destination port
payload PCMU/8000 media payload
packets 52832 received packets
bytes 9087104 received bytes
last_seq_nr 54428 last received sequence number
max_delta 3 maximum delta between two packets
max_delta_seq 21397 sequence number of the packet with the maximum

delta
max_burst 69 maximum number of packets per second
lost_percentage 0 lost percentage
jitter 6 jitter
dropped 0 packets dropped
sec-
onds_since_last_received_packet

0 seconds since last received packet

The following table shows the information for the outgoing media streams.

8.2. ABC Monitor (Optional) 215

FRAFOS ABC SBC Handbook, Release 5.3

Field Value Comment
ssrc 473964392 outgoing SSRC value
src_ip 192.168.0.149 source IP address
src_port 27054 source port
dst_ip 192.168.0.155 destination IP addres
dst_port 26120 destination port
payload PCMU/8000 media payload
packets 52832 received packets
bytes 8710432 received bytes
last_seq_nr 24326 last received sequence number
lost_percentage 0 lost percentage
rtt_min 5 minimum round trip time
rtt_max 172 maximum round trip time
rtt_avg 26 average round trip time
jitter 6 jitter
seconds_since_last_sent_packet 0 seconds since last sent packet

The call-end and call-start events have the same ID which can be used for correlation. This is however more often
used for correlation with other events, like recording for example, because there is no additional data in call-start
beyond call-end.

Fig. 3: SIP call processing events

An important capability is passing call variables (Section Binding Rules together with Call Variables) in the call
processing events. This can be used to “tag” calls with various hints, for example to discriminate domestic and
international calls. In some cases, there are predefined call variables that have a specific meaning to the ABC
Monitor. Such are currently dst_cc (Figure ABC Rule for Setting a Destination Country Code by Request URI
Prefix) and minute_counter (Figure Setting Minute Counter Call Variable).

To turn variable passing on for call events, turn on the SEMS Global Configuration Option Add call variables
into events. Care needs to be applied so that some possibly sensitive information is not passed along with the
variables to the ABC Monitor.

The call variables appear in the events with the “attrs.” prefix. If a variable name is the same a name of a mandatory
event field, the call variable overrides the field value. This can be useful for example when identity of a SIP user
should be presented in a different way (altered, anonymized) than seen in the SIP traffic. We however recommend
to use this overriding capability with caution as it leads to the loss of the original traffic view. Example of such a
rule and the resulting event is shown in Figures A Rule for Rewriting an Event Field with a Call Variable and An
Event with a Field Modified by a Call Variable.

8.2. ABC Monitor (Optional) 216

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 4: A Rule for Rewriting an Event Field with a Call Variable

Fig. 5: An Event with a Field Modified by a Call Variable

Registration Events

The registration events are generated automatically at different stages of processing SIP REGISTER requests when
register caching is enabled (see Section Registration Caching and Handling).

• reg-new. This event is produced when a SIP User Agent registers a new contact through the
ABC SBC.

• reg-del. This event is generated when a SIP User Agent deregisters a previously registered con-
tact using the RFC3261 procedures. This is typically the case when a softphone is shut-down
and it unregisters gracefully. Some clients are also implemented a way that they unregister and
re-register newly instead of periodically renewing one registered binding. See an example of
such in the ABC Monitor snapshot in Figure Event Timeline for a SIP Device Registering and
Unregistering Periodically – unregistered bindings are immediately followed by new registra-
tions.

Fig. 6: Event Timeline for a SIP Device Registering and Unregistering Periodically

• reg-expired: Indicates an expired registration binding. This happens if an upstream SIP client
fails to renew its contact within the window re-registration window agreed upon between the
ABC SBC and downstream registrar. When this timer expires, the binding will be deleted and no
incoming requests can be forwarded using the particular binding. This often happens with clients
that don’t comply to RFC 3261 by not respecting the server-side-imposed registration renewal

8.2. ABC Monitor (Optional) 217

FRAFOS ABC SBC Handbook, Release 5.3

interval or vary the contacts inadequately. Example of a timeline for such a devices is shown in
Figure Event Timeline for a SIP Device Failing to Re-register Timely. Such a devices remains
unreachable in the periods of time between the orange expiration and green re-registration bars.

Fig. 7: Event Timeline for a SIP Device Failing to Re-register Timely

Diagnostics Events

The diagnostic events are used to identify conditions that provide additional diagnostics information and some-
times alert on conditions an administrator shall verify whether they are normal. These events are triggered by
minor errors, completed playing of or recording of WAV/PCAP files, change in status of transport blacklisting,
and custom events.

• Custom events (action-log): This is one of the most important diagnostic events available in the system.
It is triggered from the ABC SBC rule-base using the “Log Event” rule action. Typically it is used when
an administrator wants to see if a specific rule is indeed evoked and how often. Also administrators use
the custom events when they begin to suspect some undesirable traffic and don’t want to drop it yet. This
action allows them to observe the suspicious traffic before making a further action. The conditions can be
any that the rule definitions allow and often includes tests if a SIP device is registered, shows a suspicious
User Agent type, tries to call a premium phone number or otherwise falls in the “suspicious category”. For
example an administrator may choose to observe all SIP messages that come to the ABC SBC without a
username in To header field URI. Example of such a “Log event” rule is shown bellow in Figure Rule for
Reporting on SIP Requests with Empty Username in From.

Fig. 8: Rule for Reporting on SIP Requests with Empty Username in From

The action includes a parameter where the administrator can specify additional text describing the event.
The parameter can include replacement expressions providing additional information about the processed
SIP message. These should be used only if necessary – when varying elements are present in event descrip-
tion ABC Monitor software cannot group the events by the same description.

• recording events (recording): These events are generated if voice recording was enabled for a particular call.
The events include HTTP reference to a file with the recorded WAV file. See also Section Audio Recording.

8.2. ABC Monitor (Optional) 218

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 9: Recording Event

• SIP traffic logging events (message-log): These events are generated only if a rule was set up to record
SIP/RTP traffic using the Log received traffic action (see Section Diagnostics Dashboard). The event
includes references to the recorded PCAP file and a ladder chart displaying the recorded traffic. The PCAP
files appears always later than the event: the event appears when recording begins, the file when it recording
ends and upload to ABC Monitor completes in background. Figure Ladder Diagram for the Suspicious
User shows an example of such ladder-chart rendered by the ABC Monitor and showing both sides of a SIP
message – incoming and outgoing.

• Error/Alert (error): These events are always produced when no route matches for a SIP request, a TLS
connection is refused, terminated or other unspecified error occurs. The ABC SBC reports these because
TLS credential management is often misconfigured and needs to be fixed for TLS clients to be able to
connect. Alerts may also appear if the system is under-dimensioned and include messages like “/data disk
usage above 80%” or a misconfiguration has been encountered in rule-base that was detected run-time (for
example: routing failed: can’t parse outbound proxy URI: 192.168.0.85).

• Notice (notice): These events are produced when some layer-3 or layer-4 conditions change. This is cur-
rently the case when a TLS connection opens or closes successfully, or when health status of a Call Agent
changes so that it is either removed from or added to a transport blacklist. (See Section IP Blacklisting:
Adaptive Availability Management). Too many SIP retransmissions event notice events are generated if a
SIP transaction reaches the defined number of retransmissions. The retransmission number triggering the
event is globally configured under “Config → Global Config → Events → Generate an event if a SIP
transaction reaches ..”. The default value is 0, which disables the event notification. Notice events are also
produced when traffic reaches a shaping soft-limit (see Section Traffic Limiting and Shaping).

• Prompt: These events are always produced when a caller’s attempt is handled using local audio announce-
ments (see Section Playing Audio Announcements).

• dest_monit: The ABC SBC reports these events when availability monitoring is enabled for a Call Agent
(see Section IP Blacklisting: Adaptive Availability Management). In ABC Monitor the events are visual-
ized in the CA Availability diagram in the “Connectivity CA” dashboard as shown in Figure Call Agent
Availability Lanes.

Security Events

This Section discusses events that have relevance to security of a SIP service. These security events are generated
when messages are dropped because of failing to accommodate a security policy. This can be because the traffic
has exceeded traffic limits, a drop action has been applied, authentication failed or an unfavorable SIP answer
came from downstream in response to a SIP request.

Counter-measures to fend off security attacks are discussed in a separate Section Securing SIP Networks using
ABC SBC and ABC Monitor (optional). The event types are the following:

• limit: These events are generated if some of the traffic constrains (see Section Traffic Limiting and Shaping)
has been exceeded. For example an administrator may choose to ban signaling traffic from an IP address
if it sends more than 10 requests per a minute. See Figure Limit Events for example of limits reporting on
traffic shaping in effect. The limit event type is also generated when current traffic volume exceeds limits
set by the ABC SBC software license.

8.2. ABC Monitor (Optional) 219

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 10: Limit Events

• message-dropped: These events are generated if a message was silently discarded using the drop action in
A or C rules. Sender of the discarded traffic will not see any answer to his request. Note that if he is probing
the service using TCP he will still be able to find out if there is running service. (Section Manual SIP Traffic
Blocking provides more details on blocking traffic using the drop action).

• auth-failed: This event is triggered always when a SIP request authentication fails. Note that the way the
SIP protocol works, an initial request is always challenged by server using the 401/407 replies. This initial
challenge does NOT trigger the event. Only when the subsequently re-submitted request with credentials
fails to authenticate and yields a 401/407 answer, the auth-failed event is generated. The reason why a
request fails to authenticate may be multi-fold and needs deeper examinations. A SIP phone user may fail
to configure his device with proper SIP URI and/or password. It may be administrative mistake on the
server side such as deactivating a user account. However it may be also a password-guessing attack, such as
shown in Figure ABC Monitor Displaying How a Brute-Force Password Guessing Attack Ramps Up. The
sudden increase in number of authentication failure clearly indicates an attempt to breach security of the
SIP service.

Fig. 11: ABC Monitor Displaying How a Brute-Force Password Guessing Attack Ramps Up

• log-reply: The log-reply event allows an administrator of the ABC SBC to identify traffic that apparently
irritates downstream SIP equipment. If for example a downstream server chooses to send a 604 for requests
that use non-existent SIP URIs, the ABC SBC may be configured to report on such using the log replies ac-
tion as shown in Figure Rule for Reporting All 604-replied Responses. Similarly the events can be generated
on receipt of any other specific reply codes, such as 403 (Forbidden).

Fig. 12: Rule for Reporting All 604-replied Responses

An example of events captured during a scanning attack is shown in Figure Events Produced During a
Scanning Attack. In the “To” column you actually see that the attacker was trying to register under different

8.2. ABC Monitor (Optional) 220

FRAFOS ABC SBC Handbook, Release 5.3

numbers beginning with 12: 122667, 12554, 122562, etc about every two seconds. When he hit a non-
existing account (12554 for example), a 604 came back and triggered a “log-reply” event. However as he
tried 12667, a 401 came back revealing to him that he had “pinged” an existing account, just without proper
credentials.

Fig. 13: Events Produced During a Scanning Attack

• firewall-blacklist: These events identify blocked IP addresses. They are are generated when an ABC
SBC chooses to drop traffic from an offending IP address. See Section Automatic IP Address Blocking for
configuring criteria for automated IP address blocking in an ABC SBC.

• firewall-greylist: These events are generated when an ABC SBC chooses to drop traffic from an IP address
that sent the ABC SBC some initial traffic but has not managed to establish trust. See Section Automatic
Proactive Blocking: Greylisting for configuring blacklisting in an ABC SBC.

8.2.2 HOWTO Find a Needle in the Haystack: Iterative Event Filtering

The ABC Monitor combines both aggregated view of event data as well as the actual data details. This is instru-
mental in finding problems quickly: the aggregated view helps to detect a trend or anomaly which would be hard
to find in the vast amount of SIP data. Once a situation worth further investigation is detected, the administrator
can apply different filters consecutively until the root cause is identified using event details. The details can go as
low as bits of SIP messages.

In this chapter, we will show an example how to iteratively proceed from detecting a high-level problem to finding
the low-level bits triggering it. The examples are taken from a real operation and therefore many of the elements
in the screenshots are shaded.

For example, administrator may find in Call Dashboard that average call failure ratio over 50% is too high, see
that most frequently occurring call failure reason is 480 (“User Offline” in SIP specification), and start nailing the
problem down by applying event filters.

This is the situation shown in Figure Example of a High Call Failure Rate Situation. Average failure rate is at
68%, the most massive error code is 480.

8.2. ABC Monitor (Optional) 221

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 14: Example of a High Call Failure Rate Situation

What the administrator typically does in such a situation is to spot the unusual trend, and inspect its details. Here
the abnormality is the unusual number of 480s, in fact the typical top error codes are Busy (486) and Canceled
(487). Therefore the administrator will limit the events to those with the SIP code of 480. He does so by clicking
the “plus magnifying glass” icon underneath the 480 code, and “pinning” the filter using the pin icon in the top
bar so that the filter can be transferred to a Dashboard like “TopLists”. The filter looks like in Figure Filter for
Further Inspection of too Many 480s. The statistics have changed because the filter limited inspected events only
to call attempts failing with 480 code, and also because the time window has slightly advanced in the meantime.

Fig. 15: Filter for Further Inspection of too Many 480s

When we now switch to the Toplist, we will find out that vast majority of the 480-terminated call attempts is
coming from a single domain, and inside this domain an anonymous user is dominating. (Figure The Top 480-er)
While we do not know, if it is a user trying to desperately reach an offline called party, or someone scanning calls,
we can pin a filter by caller, deactivate the filter by error code and see the full history of the suspicious user in
Overview.

8.2. ABC Monitor (Optional) 222

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 16: The Top 480-er

The Overview gives us a picture of a suspicious user who keeps making call attempts at a high rate without success
and also without attempt to register. This is seen in Complete Event History of a Suspicious User.

Fig. 17: Complete Event History of a Suspicious User

It pays off therefore to scroll down and look at event details for this particular user. Not only is there a detailed

8.2. ABC Monitor (Optional) 223

FRAFOS ABC SBC Handbook, Release 5.3

report on the call attempt, but under “View Messages” there is a link to ladder diagram showing the actual SIP
message exchange.

Fig. 18: Complete Event Details

Fig. 19: Ladder Diagram for the Suspicious User

The ladder diagram shows the message flow and its timing, as well as details of SIP message, including From
and To identities, type of SIP User Agent, and SDP media negotiation payload. The capability to view internal
perspective of traffic is very valuable – if traffic is encrypted, it is difficult for a troubleshooter to inspect its
content. Also if the SIP traffic is obfuscated by use of topology hiding (see Topology Hiding), it would be difficult
to relate incoming to outgoing SIP dialogs without the internal perspective.

In summary, we have shown in this example how to detect unusual situations using aggregated views (too many
480s), filter out events specific to the situation, find a user that has caused most of them and inspect in detail his

8.2. ABC Monitor (Optional) 224

FRAFOS ABC SBC Handbook, Release 5.3

gap-free history and even SIP message details. This iterative process gives every administrator powerful tools to
find out what is going on in a SIP service, and have good information to decide if he is dealing with an abnormally
active user, malicious attack or a network misconfiguration.

8.2.3 Using Filters

As shown in the previous chapter, filters are the essential instrument for finding out what is going on. In this
chapter we describe all of the filter types available in ABC Monitor. There are data filters, type filters, time filter,
and full-text filters. Multiple data filters can be combined, in which case events will be sorted out that match ALL
of them. All of the filters appear in the most upper part of the dashboards. For example, events can be restricted
to all but registration events, as long as they relate to an IP address, lead to a “480” SIP failure code and are for a
given SIP user, as shown in Figure Example of a Combined Filter.

Fig. 20: Example of a Combined Filter

Data filters are used to filter out all events with the same data field values. They can be created from many
elements shown in the dashboards. When user hovers over most of the data elements shown in the dashboards,
two magnifying glass icons with plus and minus symbol will appear. By clicking on either icon, a filter is created
that restricts events to those that either have (plus icon) or do NOT have (minus icon) the same value.

For example, one can visit the Call Dashboard, review the most frequent SIP error codes, and filter out call attempts
relating only to 403 (Forbidden) as shown in Figure:

Fig. 21: ABC Monitor filtering out 403-ed call attempts in Call Dashboard

Every data filter can be deleted, deactivated, and importantly pinned – as shown in the example in the previous
chapter, a pinned filter can be transferred to another dashboard where some specific aspect of the filtered data is
easier to find. To pin a filter, hover over it and click on the pin icon. Unpinning is done the same way.

8.2. ABC Monitor (Optional) 225

FRAFOS ABC SBC Handbook, Release 5.3

Other possibilities to adjust filters include temporary deactivation using the checkbox icon (filter appears then
dimmed), permanent deletion using the thrash bin icon, and filter negation using magnifying glass icon (negated
filters appear in red).

Fig. 22: Filter Alternations: pinned, pinned and negated, deactivated

Type filters checkboxes are shown in the top-bar and allow to easily restrict events by their respective types. This
is particularly useful in dashboards with many event types, like in Overview, when administrator wishes to filter
out events unrelated to his case.

Time filter sets the window of inspect time either absolutely, or relatively to current time. Of course, it can only
cover the time period for which events are stored, as configured during the ABC Monitor installation.

Last but not least, the top search box allows to add full-text filter that looks for a pattern in multiple fields of
the available events. By default, the full value, such as Call-ID must be included. Special terms can be used as
follows:

• *, asterisk, stands for a wildcard and can substitute for any number of any characters. Use of wildcards
slows down the search.

• \, backlash, means that the subsequent character will be interpreted literally

• a colon-separated <name>:<value> pair means that the searched value is looked for only in a field of the
given name

• combinations of the terms are possible: AND allows to introduce multiple conditions, all of which must be
met; OR allows to introduce multiple conditions, any of which must be met; NOT allows negation

• also the syntax “attrs.source:[from_ip TO to_ip] allows matching the event source IP address against an IP
address range

Therefore if there is a user Wesley making calls using his SIP address sip:wesley@frafos.net to reach the SIP
address sip:123456@example.net and he makes the calls from an IP address 192.168.0.85 belonging to the Call
Agent “wesley-net”, the following search expressions will match:

• sip\:wesley@frafos.net will match all calls from/to Wesley; note that colon must be preceded by backslash,
otherwise the ABC Monitor would attempt to search through a field named sip

• *wesley* will match all previous records, and probably some more as well, such as wesley.home and wes-
ley.office. It will also match all calls from and to the Call Agent “wesley-net”.

• attrs.dst_ca_name:wesley-net will match all calls towards the Call Agent wesley-net

• 192.168.0.85 will match all events relating to that IP address.

• attrs.source:[192.168.0.0 TO 192.168.0.255] will also match because Wesley’s IP address is inside the
range

• 487 will match all call attempts that failed with 487 SIP code

• attrs.sip-code:487 OR attrs.sip-code:486 will match all call attempts that failed because of 487 (canceled)
or 486 (busy)

The following search expressions will not match:

• wesley will not match, because full-match is attempted without wildcards

• sip:wesley@frafos.net will not match because of the colon

• NOT attrs.source:[192.168.0.0 TO 192.168.0.255] will certainly match many events but not Wesley’s as
his IP address is in the negated IP range

• attrs.duration:[500 TO *] will filter out all calls exceeding 500 seconds in duration

8.2. ABC Monitor (Optional) 226

sip:wesley@frafos.net
sip:123456@example.net

FRAFOS ABC SBC Handbook, Release 5.3

8.2.4 Overview Dashboard

The Overview Dashboard displays events of all types. This is often used, when inspecting a gap-free history of a
specific IP address or user identified by a URI.

In the following example, we look at traffic generated in the frafos.net domain. We let a user to register using
wrong password (failed-authentication event), then retry using a correct password (register-new), make a call to
an announcement (prompt, and also message-log because administrator chose to store all SIP traffic on this SBC,
and action-log because administrator chose to issue a custom event for calls to a specific destination).

Fig. 23: Example: gap-free history of all events in a domain

Some other interesting chart in the Overview dashboard is that depicting total number of events by time. Especially
finding a disproportionally high number of a specific event type indicates an unusual situation. For example a high
number of greylisting events failures as shown in Figure Total Events with Disproportionally High Number of
Greylisted IPs typically signifies a security attack.

Fig. 24: Total Events with Disproportionally High Number of Greylisted IPs

8.2. ABC Monitor (Optional) 227

FRAFOS ABC SBC Handbook, Release 5.3

8.2.5 Calls Dashboard

The Calls Dashboard analyzes call-related events (see Section Call Processing Events) to summarize processed
SIP calls and how their quality was.

A screenshot of the top part of the dashboard has been already shown in Figure Example of a High Call Failure
Rate Situation. From top to the bottom, there are call statistics, call events timeline, and breakdowns of successful
calls by termination party and final status.

The pie chart breakdowns help to identify in detail why calls are being terminated. The left-hand side pie
chart shows who terminated established calls. The normal termination types are “caller-terminated” and “callee-
terminated”. However calls could have been also terminated by the ABC SBC for a variety of reasons. These
include “no-ack” when a caller failed to deliver the SIP ACK request, “rtp-timer-terminated” when RTP media
stopped flowing without clean SIP session termination. See the Section Call Processing Events for the full list.
The right-hand side pie chart shows both successfully established calls and failed call attempts and structures
them by status code in the outer ring. The status codes are categorized in the inner circle intro three groups:
success (200-answered INVITEs), userfailure (486 Busy and 487 Canceled) and network failure (everything else).
Clicking on a pie chart segment allows to introduce a filter for the events of the same kind.

Fig. 25: Call Completion Status Breakdown

The lower dashboard part is shown in Figure Screenshot: Lower Part of the Call Dashboard and includes call
durations, break-down of calls by countries, and eventually quality details of QoS-troubles calls and the call event
details.

8.2. ABC Monitor (Optional) 228

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 26: Screenshot: Lower Part of the Call Dashboard

Note that break-down of calls is calculated differently for source and destination. The source country is deter-
mined using the request source address, whereas the destination country is determined from request-URI using
knowledge of the SIP service’s dialing plan. To accomplish the latter an administrator must tag the calls by a
country tag in the ABC SBC. To do so, he must have knowledge of used dialing plans and set the call variable
“dst_cc” in ABC SBC rules to proper country codes using the “Set Call Variable” Action, see Figure ABC Rule
for Setting a Destination Country Code by Request URI Prefix.

Fig. 27: ABC Rule for Setting a Destination Country Code by Request URI Prefix

The next section highlights calls with suboptimal VoIP quality. Especially of importance are calls with the attribute
“attrs.rtp-direction” set to “oneway”. That means that for that call, media has been received only in one direction.
This is an irritating VoIP phenomena which typically occurs when there are NAT connectivity problems for the
affected user.

Last but not least in this dashboard, there is the list of call details. If PCAP and/or WAV recording was enabled
for the respective calls in ABC SBC rules, the files or ladder diagrams (see example in Figure Ladder Diagram
for the Suspicious User) can be downloaded from the unfolded event details. QoS reports are included in the
call-stop events in JSON format. The reports include two parts, one for the media streams from and to the caller,
and another one for the streams from and to the called party. The values have the following meaning:

8.2. ABC Monitor (Optional) 229

FRAFOS ABC SBC Handbook, Release 5.3

• max_delta stands for the maximum interarrival packet gap of received packets. Values above 120 ms for
audio are already high and indicate a gap which could have occurred due to muting or voice inactivity
detection without marking it as such.

• loss percentage shows relative number of packets lost2. Values above 1% show lossy networks, values
bellow 5% can be often tolerated by listeners.

• jitter3 shows variation in packet transit delay. High value above 120 ms typically indicates network conges-
tion and results in dropping of late-arrived packets.

The following example shows such a QoS report. The first bracket pair encloses records about packet streams
from caller as seen by ABC SBC and to caller as reported by caller’s RTCP reports. The second bracket pair
reports quality on streams from and to callee both of them with perfect QoS:

[
{
"dir": "in",
"ssrc": "1864183198",
"src_ip": "192.168.0.155",
"src_port": "20518",
"dst_ip": "192.168.0.155",
"dst_port": "17342",
"payload": "PCMU/8000",
"packets": "15670",
"expected": "16204",
"bytes": "2695240",
"last_seq_nr": "42433",
"max_delta": "14851",
"max_delta_seq": "41514",
"gaps": "8",
"lost_percentage": "3.295482596889657",
"jitter": "13",
"dropped": "0",
"seconds_since_last_received_packet": "0",
"MOScqex": "3.420"

},
{
"dir": "out",
"ssrc": "1618416588",
"src_ip": "192.168.0.155",
"src_port": "17342",
"dst_ip": "192.168.0.155",
"dst_port": "20518",
"packets": "16271",
"bytes": "2798612",
"last_seq_nr": "16280",
"lost_percentage": "6",
"jitter": "39",
"rtt_min": "114",
"rtt_max": "1150",
"rtt_avg": "164",
"seconds_since_last_sent_packet": "0"

}
]

2 For in-depth discussion of packet loss we recommend the following article: http://www.voiptroubleshooter.com/problems/packetloss.html
3 For in-depth discussion of jitter and its sources we recommend the following article: http://www.voiptroubleshooter.com/indepth/

jittersources.html

8.2. ABC Monitor (Optional) 230

http://www.voiptroubleshooter.com/problems/packetloss.html
http://www.voiptroubleshooter.com/indepth/jittersources.html
http://www.voiptroubleshooter.com/indepth/jittersources.html

FRAFOS ABC SBC Handbook, Release 5.3

8.2.6 Registration Dashboard

The registration dashboard helps to figure out if registration works for SIP users and also identify where they
are coming from by analyzing registration events (see Section Registration Events). Events reporting on expired
registrations are of particular concern because often they mean a user cannot be reached by signaling messages.
Most often this is caused by broken home routers, corporate firewalls with a too strict policy, or imperfect SIP
client implementations that ignore some important nuances of the SIP RFC3261 contact registration handshake.

The dashboard is structured in several parts shown in Figure Registration Dashboard. Bellow the statistic is also
a list of the actual registration details (not shown in the Figure).

The first row shows a timeline of the registration events. Our screenshots shows a usual situation in which in
every time bucket the number of new registration is about the same as number of deleted and expired registrations.
Unusual situations that can be captured here are connectivity outages demonstrated by an increase in expired
registrations. Note that SIP devices that register properly and keep re-registering do not produce events as they
cause neither a new registration, nor a deleted/expired one.

The second row shows a geographic map of registration events. This gives a rough idea how the users are dis-
tributed in the world, even though it is not perfect. That’s because the map really shows the events. As mentioned
in previous paragraph, not every registered user must be producing registrations events in the examined period of
time.

The next row shows use of transport protocols as reported in the registration events, these may include UDP, TCP,
TLS and Websockets.

Finally we see the breakdown of SIP User-Agents, here FritzBox being the device producing more registration
events, and user accounts that expire most often – probably as result of some NAT traversal difficulties.

Fig. 28: Registration Dashboard

8.2. ABC Monitor (Optional) 231

FRAFOS ABC SBC Handbook, Release 5.3

8.2.7 Connectivity CA Dashboard

This dashboard that came with 4.0 release focuses on topology and visualizes statistics for calls between Call
Agents. This helps to discover situations such as a destination Call Agent failing abnormally often to complete
calls, or SIP compatibility issues on a link from one CA to another. The numbers visualized in this dashboard
refer to the currently chosen time window, as is the case with all other dashboards. The screenshots shown here
visualize a situation with five call-agents.

There are two graphs in the top row that provide a quick glance at the situation. The first chart is a directed cyclic
relationship graph showing how events, typically call-start, call-attempt and call-end, flow between Call Agents.
The thicker the vertices, the more events were generated for traffic on this route. Also the nodes are colored from
green to red – the closer to the red side of spectrum the more events refer to traffic from or to the respective node.

The table on the right-hand side shows statistics for calls by destination call agent. This table allows to quickly
find out signaling performance of the CA.

Fig. 29: Top Part of the Connectivity CA Dashboard

In the next rows there are several CAxCA matrixes that visualize the following characteristics of calls between
source CA (Y axis) and destination CA (X axis):

• number of call attempts

• connection failure ratio, i.e. number of call attempts divided by sum of call-attempts and call-starts

• duration of calls between CAs

• number of completed calls

Darker colors represent higher numbers, hovering with a mouse over a field shows the actual numbers. In the
example screenshot, the darkest failure ratio of 78.9% is shown for the pair proxy->users_WebRTC.

8.2. ABC Monitor (Optional) 232

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 30: Bottom Part of the Connectivity CA Dashboard

The CA Connectivity Dashboard can be used for traffic analysis the same way as laid out in the Section HOWTO
Find a Needle in the Haystack: Iterative Event Filtering. Administrator starts by finding out some aggregated
value which appears worth investigating. It can be for example an unusually high failure rate for a SIP connection
from Call Agent “proxy” to Call Agent “users_webRTC” as shown in Figure A CA-CA connection Matrix with
High Failure Rate. This connection shows 78.9% failure rate. It pays off therefore to investigate it in detail.

Fig. 31: A CA-CA connection Matrix with High Failure Rate

Narrowing events down to those concerning this connection is as easy as clicking on that particular field in con-
nection matrix and confirm the resulting filter as shown in Figure Applying a CA-CA filter.

8.2. ABC Monitor (Optional) 233

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 32: Applying a CA-CA filter

After applying and pinning the filters, one can switch to the Call Dashboard and inspect the failures for this
particular connection in details. Here, one can find that 500 SIP responses dominate and inspect the details of the
respective events.

Fig. 33: Finding out the Root Cause of High CA-CA Failure rate

The bottom-most Connectivity Dashboard lane shows availability of the monitored Call Agents. Only Call Agents
for which monitoring has been enabled are shown (See Section IP Blacklisting: Adaptive Availability Manage-
ment). The 0 status represents a Call Agent that is reachable, all other values represent some kind of connectivity
issues (unreachable, DNS-unresolvable, overloaded or returning a negative response).

Fig. 34: Call Agent Availability Lanes

8.2. ABC Monitor (Optional) 234

FRAFOS ABC SBC Handbook, Release 5.3

8.2.8 Security Dashboard

Security Dashboard is perhaps one of the most important ones as it tracks events relating to security as explained
in Section Security Events and attempts to answer the question where the attacks are coming from. Occurrence
of such events may indicate an attack that can compromise security of a SIP user or of the whole service. A
detailed debate of security techniques recommended to fortify a SIP service against attackers is provided in Section
Securing SIP Networks using ABC SBC and ABC Monitor (optional).

The security dashboard comes with three important charts in the Toplist section: the most frequent offenders by
originating IP address, /24 netmask and geographic region.

Unless an attacker is mounting a sophisticated distributed attack, the top-list shows which IP address is causing
the most of offending traffic. It is as easy as a single click of button to limit all events to those caused by the
offending IP address, inspect these and undertake some appropriate security measures, blocking the IP address
typically. Even if some more sophisticated attackers can send small batches of traffic from multiple IP addresses
in the same subnet – they will appear on the /24 subnet toplist.

The geographic map is also very important from the security point of view. Even though most attackers don’t avail
of many IP addresses, they sometimes do use more than one subnet to stay under radar screen. As long as they do
not use VPNs, these can be tied down by their geographic region.

An example of a situation in a public SIP service is shown in Figure Example of the Security Dashboard. It shows
the most active IP addresses violating the SIP site’s policies, and also their break-down by subnet and country,
China being the most active source of offending traffic.

8.2. ABC Monitor (Optional) 235

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 35: Example of the Security Dashboard

8.2. ABC Monitor (Optional) 236

FRAFOS ABC SBC Handbook, Release 5.3

8.2.9 Exceeded Limits Dashboards

Trying to find some unusual patterns may be sometimes a repetitive task. Therefore it is possible to raise alerts
when some abnormal conditions repeat too often. The ABC Monitor allows to configure such alerts under “Set-
tings” and inspect the alerts in the Exceeded Limits Dashboard. There are several types of the alerts, that are
described in subsequent subsections.

The dashboard is only of advisory nature: it highlights excessive traffic but does not take a further action. Admin-
istrator must act if he chooses to. The following example in Figure Exceeded Limits Dashboard shows various
such alerts as they occur over time. The donut chart breaks down the number of alerts by their type, the most
offending URIs are shown in the top-chart on the right-hand side.

Fig. 36: Exceeded Limits Dashboard

Threshold for the respective alert types can be configured from the Settings Menu. The actual values can vary
from site to site as what is legitimate for a SIP service may be alarming for another service. For example, in a
domestic VoIP service reporting a change of user’s country may be worth inspecting, whereas the same report is
usual in a global public SIP service.

8.2. ABC Monitor (Optional) 237

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 37: Alert Threshold Settings

Maximum Call Duration (max_duration)

This alert is raised when a call is completed that exceeded a maximum call length threshold. The threshold value
is configurable under “Settings”. Default value is 10800 seconds (3 hours).

8.2. ABC Monitor (Optional) 238

FRAFOS ABC SBC Handbook, Release 5.3

Too Frequent Call Attempts from a URI (call_start)

This alert is raised when a user identified by his URI makes too many call attempts. This can be caused for
example by a SIP scanner. The number of attempts and the time-span are configurable under settings and default
to 10 attempts for previous 10 minutes.

Too Frequent Call Attempts or Short Calls from a URI (scanners)

This is similar to the previous alert except very short calls bellow 0.5 seconds count towards the limit as well.

Repeated Traffic Shaping Violations from an IP (limit)

This alert is raised when too many limit events originate from a single IP address over a period of time. By default,
10 such limit event occurrences over past 10 minutes will raise the alert.

Repeated Drop for an IP Address (message-drop)

This alert is raised when the rule action drop in an SBC drops an incoming SIP request from an IP address too
often, by default 10 times in the past 10 minutes.

Too Many Authentication Failures from an IP Address (auth_failed)

This alert is raised when an authentication fails too many times from a single IP address. By default, 10 attempts
in past 10 minutes from the same IP address will raise the alert.

Too Many Authentication Failures from a URI (auth_failed)

This alert is raised when an authentication fails too many times from a single URI. By default, 10 attempts in past
10 minutes from the same IP address will raise the alert.

Rapid Growth in Number of Security Events (security_metrics)

This alert is raised when the number of security events (drop, limit, auth-failed, log-reply) begins to grow too
quickly.

A URI Active from behind too many IP addresses (many_IPs)

This alert allows to detect situations in which a user as identified by his From URI is spotted at too many IP
addresses. This may be caused by both legitimate and illegitimate behavior. Sometimes users like to be reachable
under the same URI at multiple destinations (office, home, second-home) or multiple call agents may be registered
under the same call center’s SIP AoR. However it may be also a case of identity theft. The alert includes number
of IPs found, and the actual IP addresses if there are fewer than five of them. The alert doesn’t repeat until next
day.

8.2. ABC Monitor (Optional) 239

FRAFOS ABC SBC Handbook, Release 5.3

Too Many Users behind a single IP Address (many_URIs)

This alert is triggered when events from too many users appear coming from a single IP address. This may be
often legitimate when there are multiple users behind a home NAT, carrier NAT, or a PBX. The URI count is
shown in the alert (countURI field) and so are the actual URIs if there are fewer than five of them (URIs field).
The alert doesn’t repeat until next day.

Changed Country Alert (diff_country)

This alert is raised when a new registration, call attempt or call with the same From URI comes from a different
country than previously in the past 24 hours. The alert may identify both legitimate cases (users or call-centers
with presence in multiple countries) as well as identity theft. The field firstCountry shows the country that was
encountered previously, geoip.country_name show the current event’s country name.

Too Many Minutes from a User (too_many_minutes)

This alert is raised for tagged calls when a user identified by his From URI address makes too many call minutes
in the observed period of time. By default 7260 minutes in the past two hours will trigger the alert. The field
“durationSum” shows the offending number of seconds.

To tag calls to count against the many-minutes alert, set the call variable minute_counter to the value enabled.
This can be particularly useful in topologies when a call on a way to and from a PBX passes the SBC more than
once, see Figure Setting Minute Counter Call Variable.

Fig. 38: Setting Minute Counter Call Variable

Underperforming Destination Call Agent (poor_failure_ratio_ca)

This alert is raised when the number of call attempts is relatively high to the number of successful calls. This may
often be the case when a destination Call Agent begins to be overloaded. The alert is raised when the failure ratio
exceeds 90%.

8.2.10 System Dashboard

The system dashboard shows utilization of the ABC SBC Linux operating system: system load, memory and
CPU.

The example screenshot shown in Figure System Dashboard shows utilization of an SBC. The situation here is
normal as all the values keep oscillating within a fixed range.

8.2. ABC Monitor (Optional) 240

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 39: System Dashboard

8.2.11 Network and Statistics Dashboard

The network statistics dashboard shows amount of traffic processed by all of the managed SBCs, both at high-
level (number of calls and registrations) and low-level (number of bytes and packets). It also shows statistics of
automated blacklisting.

The example in the Figure Network Statistics Dashboard Capturing a Failover Situation shows a typical situation
on a public SIP service. The number of registrations remains fixed over time at about 3 thousands. Parallel
calls peak at 8 PM, and a moderate number of auto-blacklisted IP addressed reaches slightly above one hundred.
The number of greylisted IP addresses is quite high though: at 70,000 and constantly increasing. That’s a clear
evidence that the public SIP service is continuously subject to SIP scanning. The number of IP addresses that have
passed greylisting is slightly higher than number of registrations: obviously some registrations and re-registrations
occur in about same quantity, leaving the number of current registrations constant, and increasing number of IP
addresses that have been accepted over time.

8.2. ABC Monitor (Optional) 241

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 40: Network Statistics Dashboard Capturing a Failover Situation

Particularly the number of calls and registrations is important – a dip often almost always indicates some abnormal
network conditions. For example, if the SIP services loses its IP connectivity, SIP re-registrations will not reach it
and subsequently the number of current registrations sinks down.

8.2.12 Diagnostics Dashboard

The diagnostics dashboard collects details that help with troubleshooting of low-level problems. Such may include
SIP and SDP interoperability problems, or QoS problems. The dashboard shows events described in Section
Diagnostics Events. ABC Monitor visualizes these events in several dashboards: Diagnostics, Transport and
Connectivity CA.

Most of these events appear only when activated by administrator in the ABC SBC rules. The key diagnostics
feature the ability to store PCAP files of SIP/RTP and WAV audio files. Being able to retrospectively inspect these
allow administrators to find a problem which appears only transiently and is hard to reproduce.

In order for these files to appear in the dashboard, the ABC SBC must be configured to produce them. Once
configured for selected calls, as soon as they complete, ABC SBC uploads the resulting WAV and PCAP files to
ABC Monitor. Eventually administrator can download them from the diagnostics dashboard by clicking on the
respective event details. There is also a possibility to see the SIP traffic in from of a ladder chart as shown in
Figure Ladder Diagram for the Suspicious User.

It is worth noting that this ABC SBC capability to report on the traffic as seen “from inside” is superior to the
capability of external snooping-based monitoring equipment. The “insider view” allows to analyze such SIP traffic
even when it is encrypted when on the net, or obfuscated using Topology Hiding (see Section Topology Hiding.)

8.2. ABC Monitor (Optional) 242

FRAFOS ABC SBC Handbook, Release 5.3

To activate recoding of the SIP traffic one must use the action “Log received traffic”. When this action is called
for a SIP call, the SIP signaling is recorded in PCAP file, optionally including RTP traffic.

Fig. 41: Configuring traffic capturing

When recording completes, a “message-log” event is produced that includes a references to the stored PCAP file.

The parameter “PCAP file name” allows administrators to define their own filename for the PCAP files. Using
Replacement expressions (see Using Replacements in Rules) one can include SIP message elements in the file-
name that may make identification and sorting the recorded files easier. If no filename is chosen, the ABC SBC
chooses its own ephemeral filenames. A fixed name may result in mixed PCAPs for different transactions. If
custom filename is being used, it is recommended to not use fixed filename but include some date or time variable
replacement in the filename to make it unique. In any case, the filename is relative to the path /data/traffic_log to
avoid conflicts with the filesystem. Use a filename with .pcap extension.

Note that this action cannot be used multiple times for the same call meaningfully. In such case an error is reported
in the SBC process log and only the first used logging action takes effect. Also due to the “inside view” nature
how the packets are captured, they may display some minor differences from the actual traffic as seen on the net.
Specifically TCP headers are not shown for SIP traffic sent using TCP.

Custom events also appear in this dashboard and also require a proper configuration on the SBC side as shown in
the Section Diagnostics Events.

8.2.13 Monitor Troubleshooting

Should the ABC Monitor itself become a bottleneck in a network, it is a good idea to check its status. To see the
status page, open its URL with path “/status” as shown in the screenshot Figure Displaying ABC Monitor Status.
If the status shown on the page is not “green”, collect the statistics and contact FRAFOS support.

Fig. 42: Displaying ABC Monitor Status

8.2. ABC Monitor (Optional) 243

FRAFOS ABC SBC Handbook, Release 5.3

8.3 Live ABC SBC Information

The Frafos ABC SBC allows to inspect its internal state in the administrative GUI.

8.3.1 Registration Cache

Registration Cache plays a significant role in off-loading registers, see Section Registration Caching and Handling
for more details. The actual Content of the ABC SBC registration cache can be inspected using the web interface
under the “Monitoring → Registration cache” link, see Fig. Registration cache.

Fig. 43: Registration cache

The following information is displayed for each entry:

• AoR - Address of Record. SIP URI address that is associated with none, one or more user Contacts by the
SIP registration procedure.

• Contact-URI - Contact registered by the user agent and associated with an AoR.

• Expires Value (registrar-side) - registration expiration at registrar side. This is the time when both the
downstream registrar and the ABC SBC will let the contact expire.

• Expires Value (UA-side) - registration expiration at client (UA). This is the time when the ABC SBC expects
the client to re-register. Failures to re-register timely are ignored to keep the client reachable even if it its
re-registration procedure doesn’t work accurately. Because of REGISTER throttling feature (see Section
Registrar off-load) the actual value may be different (earlier) from Expires Value at registrar-side.

• Source IP - IP address where the REGISTER was received from

• Source Port - port where the REGISTER was received from

• User Agent - user agent identity (content of User-Agent header in REGISTER message)

8.3. Live ABC SBC Information 244

FRAFOS ABC SBC Handbook, Release 5.3

8.3.2 Live Calls

“Monitoring → Live calls” shows list of active calls, i.e. calls that have been forwarded and established. The
calls appear there from the time when a 200 SIP response is received from a downstream SIP element, till the
call is terminated. Calls that are in so-called “early media” or “ringing” status do not show, neither are locally
processed calls shown (e.g. calls processed using Onboard Conferencing).

Since the ABC SBC acts as a SIP B2B user agent, two call legs are shown for each established call:

• A leg (originating leg) - SIP dialog established with caller

• B leg (terminating leg) - SIP dialog established with callee.

Information displayed for each call leg include:

• Source IP - IP address where the REGISTER was received from

• Source Port - port where the REGISTER was received from

• Call-id - SIP dialog identifier

• Remote party - URI of remote party (equals the From URI for A leg and the To URI in case of B leg)

• Remote target -Contact of remote party

• Local party - Local URI.

• Dialog state - Current state of the SIP dialog

• Call start time - Time of call setup

The administrator can manually terminate the call using the “kill“ link and inspect call status details using the
“Call Status Information” link.

Fig. 44: Live Calls

8.3.3 Destination Blacklists

“Monitoring → Destination Blacklists” shows IP addresses that have been found to be unresponsive. See section
IP Blacklisting: Adaptive Availability Management to find out how to configure the ABC SBC to handle routing
to unresponsive SIP destinations.

The Figure Destination Blacklists shows the user-interface for monitoring the unavailable IP addresses. It shows
a single IP address and time-to-live to remain on the availability blacklist.

The TTL field specify the time interval (in seconds) for which the destination is put on blacklist. When this
interval pass, the destination is automatically removed from the blacklist. If ‘-1’ value is used for TTL or if “Valid
forever” checkbox is checked the destination is put on blacklist forever or until it is removed manually.

8.3. Live ABC SBC Information 245

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 45: Destination Blacklists

8.3.4 User Recent Traffic

The ABC SBC always keeps track of the most recent SIP traffic. This is particularly useful when a problem is
identified which doesn’t occur anymore and needs to be troubleshooted retro-actively. Another reason to look-
back in this stored traffic is it includes even IP packets that are filtered at IP layer (see Section Police: Devising
Security Rules in the ABC SBC) and cannot be troubleshooted at higher layers.

By default, there are 10 files of max. 50 MB size rotated to store the captured traffic. The file size and number
of files to keep should be tuned according to available disk space. It can be configured or disabled using global
config options under “Config → Global Config → Pcap” page.

Note: the files use extensions “.pcapXX”, where the “XX” part corresponds to the file number. If the global config
option to set number of files to keep is lowered, the older files (those ones that are not going to be overwritten by
next cycle) are kept for the case the data is still needed, and have to be deleted by admin.

The administrative page “Monitoring → User Recent Traffic” allows administrators to retrieve SIP traffic for a
specific IP address. Also a secondary IP address can be included in which case packets matching either IP address
will be retrieved. The retention policy for the stored traffic can be configured as shown in the Section PCAP
Parameters.

To retrieve the SIP traffic, a user must choose the time interval within the available retention period (configuration
of which is described in Section PCAP Parameters), IP address, and press the “Get PCAP file” button. Processing
can take up to several minutes depending on the time interval chosen. The traffic comes in an archive in PCAP
format along with TLS session keys that can be used to decrypt SIP traffic that came over TLS connections.

Wireshark can be used to inspect encrypted TLS traffic using the session keys, see the following link for a detailed
HOWTO: https://jimshaver.net/2015/02/11/decrypting-tls-browser-traffic-with-wireshark-the-easy-way/

8.3. Live ABC SBC Information 246

https://jimshaver.net/2015/02/11/decrypting-tls-browser-traffic-with-wireshark-the-easy-way/

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 46: User Recent Traffic

8.4 Using SNMP for Measurements and Monitoring

The SBC provides SIP and RTP traffic related counters. These measurements are exposed to external monitoring
tools using SNMP API. The administrator can also manually use standard SNMP tools (e.g. “snmptable” or
“snmpwalk” commands).

The SNMP daemon uses the custom interface (CI) and is configured in the “Config → Global Config → SNMP“
screen. The ABC SBC collects general, per Realm/Call Agent and user defined measurements. Complete SBC
counters specification in MIB format is available in the “ /usr/share/snmp/mibs/FRAFOS-STATS-MIB.txt“ file.

8.4.1 General Statistics

General statistics present the number of the calls currently processed by the system.

• Calls - number of active calls

• CallStarts - number of call attempts

• Bits - RTP Bits relayed

• Regs - number of SIP registrations

• MediaPorts - number of media port used

• UASTrans - number of ongoing SIP UAS transaction

• UACTrans - number of ongoing SIP UAC transaction

The following example shows the current number of calls. Note that on your system you must use its administrative
IP address instead of the address shown in the example, the SNMP port configured under SNMP app (if configured
differently from the default 161), and that the -c parameter must be set to the current SNMP community value if
changed under “Config → Global Config → SNMP”:

% snmpwalk -v 2c -c sbc_com_321 172.31.2.42 FRAFOS-STATS-MIB::Calls
FRAFOS-STATS-MIB::Calls.0 = INTEGER: 1

8.4. Using SNMP for Measurements and Monitoring 247

FRAFOS ABC SBC Handbook, Release 5.3

8.4.2 Statistics per Realm / Call Agent

These measurements are counted for each Realm and Call Agent separately.

• UUID - unique identifier

• Name - Realm resp. Call Agent name

• RealmName - Realm name which a Call Agent belongs to (shown for call agent only)

• CallsStartsTo - number of call attempts to the Realm/Call Agent

• CallStartsFrom - number of call attempts from the Realm/Call Agent

• CallsTo - number of call attempts to the Realm/Call Agent (including calls in progress)

• CallsFrom - number of call attempts to the Realm/Call Agent (including calls in progress)

• BitsTo - RTP Bits relayed to the Realm/Call Agent

• BitsFrom - RTP Bits relayed from the Realm/Call Agent

The following example provides a snapshot of statistics collected by the ABC SBC using the snmptable command:

% snmptable -v 2c -Cb -CB -c sbc_com_321 172.31.2.42 \
-Oqq FRAFOS-STATS-MIB::RealmStatsTable
SNMP table: FRAFOS-STATS-MIB::RealmStatsTable

UUID Name CallStartsTo CallStartsFrom CallsTo
→˓CallsFrom BitsTo BitsFrom
1356fb76-290c-cc49-4b46-00007784bfc6 sip-realm 2 0 2
→˓ 0 42656 51690
5fa54bf5-01d5-56e9-23b4-000019b29424 rtc-realm 0 2 0
→˓ 1 51690 42656

8.4.3 Call Agent destination status

These measurement are exported from the destination monitor.

• UUID - status UUID (call agent UUID + resolved)

• Realm - realm name

• CaName - call agent name

• Dest - raw destination address

• Resolved - resolved destination address

• Status - destination status

• BlTTL - black list time to live

The following example provides a snapshot of statistics collected by the ABC SBC using the snmptable command
Please note, if SNMP return FRAFOS-STATS-MIB::CADestStatusTable: No entries, it simply mean that no metric
was register / no ca are blacklisted:

% snmptable -v 2c -Cb -CB -c sbc_com_321 172.31.2.42 \
-Oqq FRAFOS-STATS-MIB::CADestStatusTable
SNMP table: FRAFOS-STATS-MIB::CaDestStatusTable

UUID Realm CAName Dest
→˓Resolved Status BLTTL
bbece1ad7e9e89224f82d57b10de6feb default testing_two proxy.frafostest.net sip:10.0.
→˓1.111 Unreachable 100
1a8290e08c9e53623548c5695e469340 default testing_two proxy.frafostest.net sip:10.0.
→˓1.119 Unreachable 100
3e70cb3020b0bcd3923311bdb000950a default testing_two proxy.frafostest.net sip:10.0.
→˓1.118 Unreachable 100

(continues on next page)

8.4. Using SNMP for Measurements and Monitoring 248

FRAFOS ABC SBC Handbook, Release 5.3

(continued from previous page)

ced88da8867807accd7c20b4ec21695a test testing proxy.frafostest.net sip:10.0.
→˓1.119 Unreachable 100
c6c1db2869f403303c0543d733d38f8e test testing proxy.frafostest.net sip:10.0.
→˓1.111 Unreachable 100
cf3869ccba76acb5ca611691f1b0b347 test testing proxy.frafostest.net sip:10.0.
→˓1.118 Unreachable 100

8.4.4 Interfaces statistic

These measurement are exported from the transport layer.

• Name - interface name

• ReqSent - number of sent requests

• RepSent - number of sent replies

• ReqRecv - number of received requests

• RepRecv - number of received replies

• ReqSentRetr - number of sent retransmitted requests

• RepSentRetr - number of sent retransmitted replies

The following example provides a snapshot of statistics collected by the ABC SBC using the snmptable command:

% snmptable -v 2c -Cb -CB -c sbc_com_321 192.168.8.134 \
-Oqq FRAFOS-STATS-MIB::InterfaceStatsTable
SNMP table: FRAFOS-STATS-MIB::InterfaceStatsTable

Name ReqSent RepSent ReqRecv RepRecv ReqSentRetr RepSentRetr
sig 6 8 6 6 0 0

8.4.5 User Defined Counters

User defined counters can be created and increased using an “Increment SNMP counter“ action configured in
inbound or outbound rules. This action increments a user-defined SNMP counter by a given value. As parameters
the counter name and the counter increment are given, see Fig. User defined counters.

Fig. 47: User defined counters

The value of the custom counters can be queried using the snmptable command:

% snmptable -v 2c -Cb -CB -c sbc_com_321 public 172.31.2.42 \
-Oqq FRAFOS-STATS-MIB::CustStatsTable
FRAFOS-STATS-MIB::CustStatsTable.1.2.1 "gui.alice_calls"
FRAFOS-STATS-MIB::CustStatsTable.1.3.1 12

8.4. Using SNMP for Measurements and Monitoring 249

FRAFOS ABC SBC Handbook, Release 5.3

8.4.6 SNMP traps

The SNMP daemon can generate SNMP traps (alerts). This functionality is disabled by default and can be enabled
in “Config → Global Config → SNMP“ screen by entering the trap receiver (manager) address. The trap receiver
shall be entered in format “HOST [COMMUNITY [PORT]]”. The generated traps can use SNMP protocol v1 or
v2c (or both, but do not send both to the same receiver). The time interval between checks and sending the SNMP
traps is 10 minutes. The SNMP traps are sent when any of the following conditions is met, and only if the check
state changes since last check:

• system interface link goes down or up

• disk free space drops below 10%

• system load gets over 15 (1min average) or 10 (5min average) or 5 (15min average)

8.4.7 Node Process Monitoring

Some process health check are also available trough SNMP.

The following processes are either monitored by default either commented out - leaving it up
to the user the option of monitoring them individually depending of the setup (please edit the
/etc/frafos/template/snmpd/snmpd.conf.tmpl template file).

The following process are monitored on SBC node:

Table 1: SBC Process
Process Description

redis-server Enable by default
sbc-pullconf Enable by default, keep node in sync
sbc-goconf Disable by default, keep node in sync
sbc-status-check Enable by default, report node status
goministrator Disable by default, see Reference Application Interface Options
statman “
sshd “
xmloredis “
eventbeat “
pkapman “
restify “
sems Enable by default
nginx “
tcpdump

Additionally, one wishing to monitor some service health check for the ABC Monitor would need to watch at least
those followings processes:

Process Description
nginx serve ABC Monitor GUI
moki-server serve ABC Monitor api
elasticsearch
logstash

The SNMP can be configured only as app on Sbc node interface, not on CCM node.

If any SNMP monitoring of the CCM node is needed, like monitoring of system resources (disk, memory, load),
or important processes monitoring is required, it is recommended to do that by running snmpd daemon on the host
and monitoring the host serving the container. The host OS can usually see processes of the container running on
it.

8.4. Using SNMP for Measurements and Monitoring 250

FRAFOS ABC SBC Handbook, Release 5.3

The important processes that should be running on CCM are:

Process Description
nginx serve Cluster Config Manager GUI
php-fpm serve Cluster Config Manager GUI, the php backend
mariadb database, Sbc configuration and provtables
prov2json export of provisioned tables for Sbc nodes

8.4.8 Node status report

The status of a node (similar as on the Cluster Config Manager) may be requested on demand via SNMP, using
the following command:

% snmpwalk -v 2c -c sbc_com_321 <SBC_IP> NET-SNMP-EXTEND-MIB::nsExtendObjects

8.5 Command-line SBC Process Management

Occasionally it may be useful to review or change the low-level status of daemons that implement the SBC
functionality. ABC SBC is running several daemons for processing and controlling signaling and media traffic,
management services like a web interface, configuration management, and others.

To control all these processes, the systemd daemon is running:

• systemd (Section Process Management using Systemd)

There are two actual work-horses: the signaling and database daemons:

• SEMS (Section SEMS – the SIP and RTP processing Daemon)

• redis (Section REDIS – the Real-time Database)

8.5.1 Process Management using Systemd

Systemd main system process management daemon manages processes that are started on both nodes indepen-
dently and are not part of the HA pair management.

The following SBC SBC processes are managed by Systemd:

• monit - checks for high system load or CPU or memory usage or low disk space and creates alert events
and sends email notifications.

• nginx - standard nginx web server, which works as front end for ABC SBC GUI, XML-RPC access and
Websocket redirect (if enabled).

• redis_cs

– the redis local in-memory database for storing call state.

• redis_events

– all events generated by ABC SBC and are sent to the redis local in-memory database, see Sec.
Diagnostics Dashboard for more details.

• sbc-eventbeat-1 and sbc-eventbeat-2

– those daemons connects to the redis event database and transfers the events to remote ABC Mon-
itor.

• sbc-goconf

– API allowing node’s configuration pushing, validation and deployment (if enabled).

8.5. Command-line SBC Process Management 251

FRAFOS ABC SBC Handbook, Release 5.3

• sbc-pkapman

– API exposing node’ file system PCAP files allowing fetching and parsing.

• sbc-pullconf - service to check and pull new configuration from configuration master (if enabled).

• sbc-repl-pcaprec and sbc-repl-pcaprec2 - traffic logs and recordings files replication to remote ABC
Monitor.

• sbc-statman

– service monitoring node’ system health (CPU load, CPU usage, memory usage and network in-
terfaces).

• sbc-tcpdump - this is a continuously running tcpdump process that listens on all configured and enabled
SBC signaling interfaces and captures the SIP packets as PCAP files.

• sbc-xmloredis

– API exposing different content type (live call, ipset . . .) from multiple source type (redis, XML-
RPC, file system).

• sbc-webconf-api

– API allowing multiple action relative to the node’ sems web conference.

• snmpd - SNMP daemon providing interface for communication with remote SNMP monitoring systems.
For instance, SBC measurements and counters can be queried by external monitoring tools (if enabled).

• sshd - standard OpenSSH daemon used for remote console login (if enabled).

• stunnel-rsync

– provide TLS tunnel for traffic logs and recordings files replication to remote ABC Monitor, if
connection via TLS is enabled.

• syslog-ng - standard Syslog-NG daemon used for filtering and storing log messages.

Every service is monitored by systemd and automatically started in case of any failure. A particular daemon can
be manually stopped and started by:

% systemctl stop <service name>
% systemctl start <service name>

8.5.2 SEMS – the SIP and RTP processing Daemon

SEMS is the most important daemon as it processes the signaling and media traffic. It loads the settings from the
configuration files and the SBC rules from the MariaDB database.

• configuration files: “/etc/sems“ directory

• log file: “/var/log/frafos/sems.log“

To check whether SEMS is correctly listening on all configured SBC interfaces, see the output of netstat as shown
in Fig. Checking SEMS with netstat.

Fig. 48: Checking SEMS with netstat

8.5. Command-line SBC Process Management 252

http://www.tcpdump.org

FRAFOS ABC SBC Handbook, Release 5.3

8.5.3 REDIS – the Real-time Database

Redis is used for data replication between active and standby machines. On an active machine, it is running as
“Masters,” and on the standby machine as “Slaves”.

• configuration file: “/etc/redis.conf“

• log file: “/var/log/frafos/redis.log“

The administrator can check the status of redis and which rule the process is having (and role) with:

% redis-cli | grep role

The content of the redis database (the description of its records is out of the scope of this document) can be
displayed using:

% redis-cli keys "*"

This command can be useful for checking whether data replication is correctly working by comparing redis content
on active and standby machine.

8.6 Additional Sources of Diagnostics Information

The following additional sources of management data may be also used:

• traffic monitoring and event tracking described in Section Overview of Monitoring and Troubleshooting
Techniques,

• remote monitoring described in Section Using SNMP for Measurements and Monitoring,

• process management described in Section Command-line SBC Process Management,

• logging concealed with call log in file as described in Section Monitoring and Logging.

When trying to understand some unexpected network or SBC behavior the following facilities can be also helpful:

• Audio can be recorded as described in Section Audio Recording.

• CDRs, as described in Section Call Data Records (CDRs), include useful information.

• The ABC SBC can be configured to send notification by email if some serious error such as exhausted disk
space occurs. Configure the recipient email address under “Config→Global Config→Monitoring→Email
for sending alerts”. Configure SMTP server to which the emails will be passed under “Config→Global
Config→Monitoring→Mailserver for sending alerts” to use external mail server. Configure various thresh-
olds for alerts based on high system load, memory used, CPU waiting percentage and disk usage percentage
under “Config→Global Config→Monitoring”.

8.7 Viewing ABC SBC Logs

The GUI screen “Monitoring->View logs” allow access to ABC SBC logs. We use lnav program as the log viewer
so for further details about its control, please check its documentation (https://docs.lnav.org/en/latest/).

By default all the rotated log files like for example: syslog, syslog.1 and syslog.2.gz are displayed as single entry in
the list of log files and are displayed together by the lnav viewer. Unchecking the Join rotated log files checkbox
allows to display such log files separately.

8.6. Additional Sources of Diagnostics Information 253

http://redis.io
https://docs.lnav.org/en/latest/

FRAFOS ABC SBC Handbook, Release 5.3

8.8 Coredumps

It may happen that a process does not operate properly and is terminated by signal, that may cause a “coredump”
to be generated. These coredumps are valuable for further problem debugging and might be asked by FRAFOS
support to be able to properly investigate and fix the issue.

In previous ABC SBC versions generating coredumps for the most critical process - SEMS - was allowed by
default but with containers it relies on proper host configuration that can not be influenced from the container
itself.

With nowadays ABC SBC, an “alert” event is generated when SEMS process crashes regardless of the coredump
settings, so the administrator is informed about the problem and may react appropriately.

Please note, that the process coredumps may be huge and writing them may significantly prolong the time neces-
sary to restart a process upon a crash and thus service downtime might be increased.

Additionally, they consume a lot of space so it might be necessary to monitor HDD space of the destination used
for storing them and possibly clean that storage up when necessary.

To allow a process in container to dump a core it is recommended to install systemd-coredump package on
the host OS (Debian based Linux distribution) or its equivalent:

% apt install systemd-coredump

This service is responsible for managing coredumps generated on the host and in containers running there and can
be configured (see man coredump.conf) to fulfill the particular deployment needs.

The coredumpctl utility contained in the mentioned package can be used to list:

% coredumpctl list -r
TIME PID UID GID SIG COREFILE EXE SIZE
Fri 2023-06-16 12:18:12 CEST 81029 0 0 SIGILL present /usr/sbin/sems 1.2M
Fri 2023-06-16 11:46:04 CEST 257465 0 0 SIGILL present /usr/sbin/sems 1.2M
Fri 2023-06-16 11:44:18 CEST 257212 0 0 SIGILL present /usr/sbin/sems 1.2M
Fri 2023-06-16 11:42:41 CEST 105270 0 0 SIGILL present /usr/sbin/sems 1.2M

and export particular coredumps:

% coredumpctl dump 257212 | gzip > core.gz
PID: 257212 (sems)
UID: 0 (root)
GID: 0 (root)

Signal: 4 (ILL)
Timestamp: Fri 2023-06-16 11:44:17 CEST (2 days ago)

Command Line: /usr/sbin/sems -P /var/run/sems/sems.pid -f /etc/sems/sems.conf
Executable: /usr/sbin/sems

Control Group: /machine.slice/systemd-nspawn@sbc-5.3.0.service/payload/system.
→˓slice/sems.service

Unit: systemd-nspawn@sbc-5.3.0.service
Slice: machine.slice

Boot ID: 1e74911d896440818965717facd36aa4
Machine ID: 16a8ad16f7004e0eac68aded464561d9

Hostname: sbc
Storage: /var/lib/systemd/coredump/core.sems.0.

→˓1e74911d896440818965717facd36aa4.257212.1686908657000000.zst (present)
Size on Disk: 1.2M

Message: Process 257212 (sems) of user 0 dumped core.

Stack trace of thread 77200:
#0 0x00007f162dea4d36 n/a (libc.so.6 + 0x85d36)
#1 0x00007f162dea73f8 pthread_cond_wait (libc.so.6 + 0x883f8)
#2 0x000055a9accc4d2b n/a (/usr/sbin/sems + 0xd6d2b)
ELF object binary architecture: AMD x86-64

8.8. Coredumps 254

FRAFOS ABC SBC Handbook, Release 5.3

Please note, that the “Enable coredumps” option on SEMS tab in Global config settings, that was used to allow
coredumps for SEMS process running directly on the host, is not used any more with ABC SBC 5.3 and higher
and is present just for compatibility with older ABC SBC versions.

8.8. Coredumps 255

Chapter 9

Securing SIP Networks using ABC SBC
and ABC Monitor (optional)

9.1 SIP Security Principles: Collect, Analyze and Police

Like any other Internet-based service VoIP servers can be target of fraud attempts, denial of service attacks and
abnormal operational conditions such as registration storms after recovery of a failed router with a user population
behind it. These have become common with prevalence of the SIP technology for telephony and need to be dealt
with on a daily-basis. A key function of the SBC is to fend off such situations so that the infrastructure behind the
SBC and service for the end-users remains unaffected.

Administering any service securely always consists of three steps: collect data, analyze it and police. Each of
these steps is a necessity and always requires human judgment of an administrator. This can be challenging with
the sheer amount of data to be handled and may resemble looking for the proverbial needle in the haystack. Every
day a public SIP service for one thousand subscribers generates as much as 7 GB in 13 millions SIP packets!
Obviously making an administrator look at every single SIP packet is not feasible and the ABC SBC FRAFOS
solution comes therefore with many administrative aids.

The first two steps, gathering data and analyzing it, can be purchased using various tools. FRAFOS however
strongly recommends use of its ABC Monitor (see Section ABC Monitor (Optional)) because it has a unique
access to internals of the ABC SBC and can report on many specifics not seen outside of it. The data gathered
by the ABC Monitor known as events come from inside the ABC SBC and can therefore reveal information not
visible to anyone else: plain-text signaling and media which is encrypted to the outside (always the case with
WebRTC), internal information such as reasons why a specific SIP request has been dropped, or correlation of
dialogs that are obfuscated to the outside using Topology Hiding.

The following real-world example shows a typical attack on a SIP service. The Figure Screenshot of a monitored
password-guessing attack shows the course of the attack and defense against it. The attack started on March 22,
2016 at 1AM local time from an IP address located in Guangzhou, China. It consisted of attempts to register
as users with numbers beginning with “122”. The site was initially not taking any effort to fend the attack off,
resulting in 1000 authentication attempts per hour. While the attacker didn’t succeed in registering a URI protected
using well-chosen passwords in this case, endurance or a weak password could have crowned his undertaking with
success. Therefore at about 10:30 local time, the administrator took an action and locked out the attacker’s IP
address. It took exactly one hour until the perpetrator realized his tool was receiving no responses back and started
sending from a different IP address. Now the SIP service administrator found out that a static policy is not good
enough and enabled a dynamic policy that locks an IP address if too many failed authentication attempts come
from it. The effect came instantly: the attacks were locked at transport layer and began to appear only shortly in
hourly interval: that’s the period after which the attacker changed his source IP address – few attempts were then
observed in the ABC Monitor until the new source IP address was banned again.

256

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 1: Screenshot of a monitored password-guessing attack

This example is re-iterating the importance of the fundamental security principle: collect, analyze and police. If the
site administrator didn’t have good data about what’s going on, he would be literally blind and the authentication
attack could have remained unnoticed. All in all, two requests per second is not an excessive amount of traffic on
a multi-thousand user-site, and the way the SIP protocol is designed almost every SIP request causes a 401/407
authentication challenge. Which leads to the second, analytical point. Usage data needs to be analyzed efficiently.
The administrator needs to find out if there is anything going on at all, what are the specific patterns of an attack
that can be used to fend it off, and who is the originator. The last step, fending the attack off, is the easiest once
the nature of an attack is known.

These three facets of the security life-cycle are documented in the following sections. We will discuss them in
the order a SIP packet encounters on its way. The first thing that happens to a freshly arrived SIP packet is it is
processed by a ruleset that represent a site’s security policy. We describe the available rules and practices for using
them in the Section Police: Devising Security Rules in the ABC SBC.

Analyzing the security-related events using the optional ABC Monitor is discussed in the Chapter Analyze: Find-
ing Patterns in Events using the ABC Monitor.

9.1. SIP Security Principles: Collect, Analyze and Police 257

FRAFOS ABC SBC Handbook, Release 5.3

9.2 Police: Devising Security Rules in the ABC SBC

There is nothing more dangerous than security. Sir Francis Walsingham, Queen Elizabeth’s Principal Secretary

The objective of the policing functionality is simple to state: Filter unwanted traffic as soon as possible before it
causes harm. In order to achieve this objective, reasonable policies must be administered which permit legitimate
and drop harmful traffic.

The delicate challenge is to differentiate between “friend and foe”. Resolving this dilemma often requires a learn-
ing period – the administrator or an automated system on his behalf need to find out the presence of illegitimate
traffic and its originator. An administrator can do this by analyzing traffic. The advantage of this approach is that
human assessment of the situation can capture finesses a computer fails to see. This argument is for example the
reason why air traffic control has never been fully automated – computers are still not trusted a judgment about
abnormal situation.

The disadvantage of relying on humans is, not surprisingly, the human factor too. Humans may fail to see an
abnormality in sheer amount of traffic and keep alert 24 hours a day. That’s what computers are good at: they can
look over gigabytes of traffic relentlessly, find patterns they have been taught to look after, and raise alarms any
time of day as soon as they appear.

Therefore we at FRAFOS suggest that highest level of security of a SIP service is given when automated traffic
filtering is combined with computer-aided human judgment.

In the following list we show typical attack types and also ABC SBC policies to deal with these.

• Intrusion attacks are attempts to obtain unauthorized access to a system or to a SIP user’s account. They
come by nature as an uninvited surprise at the most inconvenient time. The challenge is therefore to counter
them as quickly as possible. In the Section Automatic IP Address Blocking we are showing how to automate
prohibition of malicious traffic even before administrators do notice.

• Harassing traffic may be easier to detect and yet inconvenient to deal with. Unlike with real attacks, the
harassing traffic is mostly an unintended side-effect of a broken implementation or configuration of some
SIP devices. It doesn’t try to masquerade or surprise yet if coming in large quantities, it may have the same
devastating effect as a malicious attack. The capability to filter out such “noise” helps to reduce security
risk, off-load the infrastructure, and focus on the traffic that matters. We show how to block well-known
sources of harassing traffic at both IP and SIP layer in the section Manual SIP Traffic Blocking.

• Unprivileged traffic is traffic that does not appear harmful yet it has not been explicitly authorized to use a
SIP service. Such may not appear harmful on the first sight, yet it may be also an initial probing prelude to
an actual intrusion attack. It appears therefore a wise idea to drop traffic which does not demonstrate appro-
priate credibility before it turns into a harm. This way users exhibiting proper behavior are prioritized
over users that don’t. The simplest and yet most powerful credibility test is that of successfully completed
SIP registrations. See Section Blocking a User by his Registration Status for guidelines how to use it. Also
note that the credibility-test is extended to lower-layer by a generalized technique known as grey-listing
(Section Automatic Proactive Blocking: Greylisting).

• Excessive traffic may have many root causes: Denial of Service (DoS), breach of service-level agreements,
or SIP network misconfiguration. Regardless of the cause the results are always the same: quality of service
(QoS) declines for legitimate uses. To prevent such QoS impairments, a site better chooses to set limits on
SIP and or RTP traffic and drops traffic exceeding the limits. We show how to shape traffic in Section
Traffic Limiting and Shaping. Traffic shaping is also important to discover some sort of attacks like SIP
password guessing: if the attacking SIP device tries to masquerade as a legitimate user, the high signaling
rate it needs for guessing will give it away.

• Excessively long calls are another irritating phenomena that needs to be dealt with in order to reduce a
high-charge risk. Most often it is caused by SIP devices that do not terminate calls properly. Fraud attempts
are also known that have been trying to gain maximum by running calls as long as possible. In Section Call
Duration Control we explain how to keep a SIP service robust against infinite calls.

• Improper content in SIP signaling or SDP media can bring insufficiently robust SIP devices to failure.
This situation doesn’t happen so often because SIP devices typically do not have such processing capability
like general purpose computers to be a real magnet for all kinds of viruses. Yet the situation changes as
Android telephones come on the market and features offered by servers expand. Academics have already

9.2. Police: Devising Security Rules in the ABC SBC 258

FRAFOS ABC SBC Handbook, Release 5.3

described SQL injection attacks12 : They crafted SIP messages which included SQL commands, and the
SIP servers passed these to backend software. When the software is not sufficiently robust, opening a web
page to see a list of completed calls will also launch a potentially dangerous SQL query. If content of SIP
and SDP is considered a risk, more aggressive mediation is needed. See Sections SIP Mediation and SDP
Mediation for more information how to filter SIP/SDP content. Particularly header-field whitelisting may
be instrumental for this purpose.

The ABC SBC offers several instruments for filtering undesired traffic. There are two types of: filters operating at
IP/transport layer for the highest performance and filters operating at SIP layer when more sophisticated filtering
criteria are needed. For example a well-known flooding attacker is best eliminated by filtering out all traffic from
his IP address. On the other hand, if a single SIP user behind a SIP trunk IP misbehaves, blocking the whole trunk
IP would be throwing the baby out with the bathwater. In such a case, the SIP-layer filtering would be a safer
choice, albeit not that fast.

The IP-layer rules are managed from the administrative menu under “System → Firewall“. The screen offers a
search box where one can look for an IP address to see if it is present on any of the lists, and then several firewall
rule lists. The lists are ordered by precedence: the top lists are more manual, have higher precedence and override
the bottom-placed lists. The top lists include Manual low-level rules, Exceptions to automatic blacklists, and
Manual Firewall Blacklists and are described in Section Manual IP-layer Blocking. The bottom lists are generated
in an automated way using built-in security assessment algorithms without administrator’s intervention, can be
overridden by the manual lists in the top, and are described in the Sections Automatic IP Address Blocking and
Automatic Proactive Blocking: Greylisting.

Fig. 2: Firewall Rules Management

SIP layer filtering is then described in Section Manual SIP Traffic Blocking. If binary yes/no policies seem too
harsh, placing quota on the traffic may be a better answer, which is described in Section Traffic Limiting and
Shaping.

1 Geneiatakis, Dimitris, et al. “SIP message tampering: the SQL code injection attack.” Proceedings of 13th International Conference on
Software, Telecommunications and Computer Networks (SoftCOM 2005), Split, Croatia. 2005.

2 Abdelnur, Humberto, and Olivier Festor. “Advanced fuzzing in the VoIP space.” Journal in Computer Virology 6.1 (2010): 57-64.

9.2. Police: Devising Security Rules in the ABC SBC 259

FRAFOS ABC SBC Handbook, Release 5.3

9.2.1 Manual IP-layer Blocking

In some situations, e.g. if DOS attacks are encountered, incoming IP traffic may better be blocked already on the
operating system firewall (iptables) level so that CPU processing power and memory is saved as the SBC processes
don’t need to handle the traffic.

The ABC SBC offers a graphical user interface to configure the firewall rules under “System → Firewall“. There
are several rules list, the top-positioned rules list take precedence over the bottom rules list and are processed in
the exactly same order as shown in the GUI.

If incoming packets do not match any of these rules, default rules apply. Traffic to signaling and media interfaces
will be accepted if in the declared destination port range, traffic to administrative port numbers will be permitted
on XMI and IMI interfaces, all other traffic will be dropped.

The top-most rules list is “Manual low-level rules” and it is a “swiss army knife” for firewall administrators. While
it is the first-in-order list, we recommend to use it as the last resort due to extra complexity. Simpler rules such
as “Exceptions” and “Manual blacklists” bellow are easier to manage and audit. Nevertheless the low-level rules
my be still useful in situations when administrators wish to limit administrative access to well-known IP addresses
or permit additional administrative protocols. These rules allow to specify IP flows using source and destination
address and port numbers, and whether these flows should be accepted or dropped. That also means that attention
must be paid to the order of these rules because it does affect the result. For example, the administrator can use
the low-level rules block all traffic coming from the RFC1918 private IP address space as shown in Figure Manual
low-level Firewall Rules. When a filtering criteria such as IP address or port number is left blank in the rule, any
value in incoming IP packet matches.

Fig. 3: Manual low-level Firewall Rules

The remaining firewall rules only refer to signaling (SIP and Websocket) interfaces and are simple unordered lists
of IP and subnet addresses.

“Exceptions to the automatic blacklist” are second in order and could also be called “Whitelists”. They take
precedences over any of the blacklists bellow. This is important to be able to override too zealous behavior of
automated blacklists. This is often the case when traffic of multiple users is coming from behind a single IP
address due to NATs or a peering topology. Then the automatic blacklists triggered by a single user would block
all others behind their shared IP address. Similarly a SIP site administrator may want to exempt himself from
being auto-blacklisted, because his signaling tests may get him blacklisted. Consequently, he would not be even
able to open an SSH session to the ABC SBC.

For example a single misbehaving URI would otherwise block an IP address and all other URIs behind it. In such
a case, it makes sense to exempt this address from automated blacklisting and address the problematic URI traffic
at SIP layer. Example of such a “Whitelist” is shown in Figure Exceptions to the automatic blacklist.

9.2. Police: Devising Security Rules in the ABC SBC 260

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 4: Exceptions to the automatic blacklist

The third in order before automatic rules is “Manual Firewall Blacklist” that can disable traffic from an IP address
or subnet even before it reaches any kind of SIP processing logic. This may make sense when a DoS attacker is
detected whose traffic is better disabled as early as possible. Example of such is shown in Figure Manual Firewall
Blacklist.

Fig. 5: Manual Firewall Blacklist

The next firewall lists, automatic blacklist and greylist, are populated in an automatic way by ABC SBC, and can
only be flushed by administrator. The are described in the subsequent chapters Automatic IP Address Blocking
and Automatic Proactive Blocking: Greylisting.

9.2.2 Automatic IP Address Blocking

The ABC SBC implements an automated protection process for SIP-layer close-to-real-time detection and IP-
layer elimination of offending SIP traffic. This combination provides application-aware assessment with lower-
layer performance and helps to eliminate offending traffic without manual administrator intervention. This level
of automation cuts the detection-reaction time to almost real-time reactiveness.

A picture tells more than thousand words: The Figure Number of Events with and without Automatic IP Address
Blocking shows the profound effect of automated blocking. The event timeline begins under protection of auto-
mated blocking in a calm way with about fifty events a minute. When at 23:30 the administrator turns off the
automatic protection, the offending traffic finds its way and builds up rapidly. One hour later, 2500 events are

9.2. Police: Devising Security Rules in the ABC SBC 261

FRAFOS ABC SBC Handbook, Release 5.3

already reported every single minute, most of them failed authentication. This unfavorable status remains until the
protection is re-enabled. Then, it takes less than five minutes until order is restored again.

Fig. 6: Number of Events with and without Automatic IP Address Blocking

Intrusion attacks, by their very definition and purpose, come uninvited. Sometimes they may try to masquerade
themselves in a way that the offending traffic looks innocent: Low-pace, using names of legitimate SIP device
types. A human reaction may be too slow to identify such an attack. Therefore the automated process comes in:
It acts before a human administrator could.

The ABC SBC protection process is based on the following empirical observations: Offending traffic comes in
abnormal quantities, which are indicated by repetitive failures, these failures are linked to an IP address, and the
IP address can be blocked. In other words, when some of the security-related events (see Section Security Events)
come repeatedly from the same source, it is as good as certain we are dealing with an attack and need to isolate
that.

Linking repetitive failures with an offending source is a quite reliable assumption. Singular failures do occur,
for example if a softphone user types in a wrong SIP password an authentication failure event is reported. Yet if
the same event is repeated many times, the more likely explanation is we have encountered a password-cracking
attack. Leaving such an attack unattended creates a ticket for troubles. At the pace of 2800 authentication attempts
per minute (45 per second) shown in our example, an attacker could crack a trivial password taken from Oxford
Advanced Learner’s Dictionary (185,000 entries) in less than 70 minutes!

Similarly, when a source continues to exceed traffic limits we are dealing with a Denial of Service attack, and
when the ABC SBC is receiving repeatedly 403s from a downstream SIP service we know we are dealing with a
scanning attack in which an attacker is trying to find a gap in a dial-out authorization policy.

In such a situation banning the originating source address at the OS layer is the safest way to keep the attack from
the infrastructure. Care needs to be applied if in the network topology multiple users exist behind a single IP
address: then legitimate users could be banned as well as the actual offender. This could be for example the case
with peering traffic from behind a SIP proxy, or multiple users behind a single NAT.

The immediate effect of automated IP Address Blocking can be seen in Figure Number of Events with and without
Automatic IP Address Blocking: At the very moment when it is enabled, the storm of authentication attempts calms
down. It continues to appear briefly when either the attacker changes his IP address or the maximum “banning
time” expires – then the detection mechanism strikes in again and the attacks vanish.

Once a source IP address is detected as a repeating offender, all of its traffic will be silently dropped. The list of
all currently banned IP addresses can be found in the menu under “System → Firewall → Auto FW blacklist →
Full List “ together with the remaining time they are supposed to spend on the list.

9.2. Police: Devising Security Rules in the ABC SBC 262

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 7: Automated Firewall Blacklist

Scoring system

This effect is achieved by ABC SBC monitoring various occurrences that add to a “score” of a potential offender.
To be banned, traffic of an offender must induce several serious events within a pre-configured period of time.
Once the score is high enough to identify the originating IP address as “serial offender”, the address is put on a
blocking list and stays there for a pre-configured time.

The events that add to the score are all events documented in the Section Security Events:

• limit for excessive traffic,

• message-dropped for messages that the administrator chose to drop using the drop action,

• auth-failed for failed authentication attempts,

• log-reply for transactions which were declined by a downstream SIP entity,

• and significant errors to pass SIP compliance sanity checks.

SIP compliance sanity checks include:

• Request sequence number violation (based on CSeq checking).

• Request parsing errors:

– malformed first line,

– missing Via, CSeq, From, To or Call-ID header field,

– Unparsable Via, CSeq, From, To, Call-ID or RAck (if included) header field.

Please note: sanity checks errors do not trigger any event.

Each of these events count as 1 offense, with a negative score of 1.

The scoring system is implemented like a leaky bucket into which water is poured regularly. Once the bucket is
empty, the offending IP is blacklisted:

• each new IP address starts with a bucket filled with a certain amount of water in it (start score).

• each offense decreases that score by 1.

• for every second passed, some water is poured into the bucket (time bonus).

If the start score is not considered, a certain IP is allowed time bonus x time offenses per time. For
example, if the time bonus is set to 0.0001, this means that 0.0001 x 3600 = 0.36 offense are allowed
per hour. With 0.005, this raises to 0.005 x 3600 = 18 offenses per hour, or 0.3 offenses per minutes.

The start score raises the score at the beginning so that the first offense does not cause blacklisting immediately
(except if a huge time bonus is setup, which is not recommended), so that in normal cases it should be set to a
value greater than 1.

9.2. Police: Devising Security Rules in the ABC SBC 263

FRAFOS ABC SBC Handbook, Release 5.3

Once an IP has been blacklisted, and the blacklisting expired, the score starts fresh as for a new IP.

If no offense has been registered in a certain amount of time (time to remove entries), the IP record is deleted, so
that the next offense for that IP will reset the score to its starting value.

Given these settings, different strategies can be implemented:

• trust strangers: this strategy starts with a high start score (> 5), but won’t allow any other offenses after
that by using a very low or 0 time bonus.

• forgiver: the forgiver will forget about IPs that show a good conduct very fast (< 300s).

• close watch: the close watch will not allow much from the beginning (start score low; ~ 1), allows an
offense every now and then (time bonus ~ 0.0005 / s = 1.8 / hour) and takes a long time to
forget (time to remove entries > 3600).

Please note that these strategies can be combined together to allow for proper functionality without letting bad
behavior slip through.

Setting up automatic blacklisting

Automated blacklisting is turned off by default. To enable it perform the following steps:

• Turn it on. Under “Config → Global Config → Firewall“ turn on “Blacklist IP addr for repeated
signaling failures“. This will enable the automated blocking process that will process the “score” for IP
addresses.

• Fine-tune it if necessary:

– The options “Signaling failures blacklist: IP address start score before any offense“ (recom-
mended value: 2.8) and “Signaling failures blacklist: rate per second used to calculate a time-
related bonus between offenses“ (recommended value: 0.0005) in the same global configuration
section allow to specify a threshold. When exceeded, the offending IP address will be blacklisted. The
first parameter specifies an initial “allowance” that helps to overcome initial problems like forgotten
password. The other parameter sets an error rate which can be tolerated over time.

– The option “Signaling failures blacklist: time in seconds to remove entries for which no event has
occurred from score calculation:“ states how long an IP address continues to be suspected after it
produced its first security events. Recommended value is 600.

– The option “Time in seconds to blacklist IP addr for signaling failures:“ determines how long an
offending IP address stays on a blacklist. Recommended value is 3600.

• Define what occurrences add to the blacklisting score:

– To include authentication failures and SIP protocol sanity checks, enable the options Sanity and Auth
under “Realms → Call Agents → Edit → Firewall Blacklisting“. If this CA option is not set, the
traffic coming from IP addresses within this CA will not be blacklisted.

– Additionally scripting actions used for constraining undesired traffic may be set up to add to the
blacklisting score. To enable the “drop” action to add to the score, check its “Blacklist by firewall
if repeated” option as shown in the Figure The Drop Rule Options. To count originators of requests
that were rejected by a downstream server, use the action Log message / Event for replies, include
message codes you are concerned about and turn on the option Log to firewall blacklist. The Figure
Scoring Rejected Requests shows an example of such a rule intended to decline scanning attacks trying
out calls to various telephone numbers. The guesses frequently fail and cause the replies with code
604. If this happens, the action Log message / Event for replies increases the blacklisting score.

9.2. Police: Devising Security Rules in the ABC SBC 264

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 8: The Drop Rule Options

Fig. 9: Scoring Rejected Requests

Note again that blacklisting can impair legitimate users who share the same IP address with an offending user.
This is often the case with NATs or a trunk Call Agent represented by a single IP address and a single user that is
misbehaving. In such a case, it may make sense to turn off auto-blacklisting for such a Call Agent, and deal with
the misbehaving URI using SIP-layer filtering as shown in Section Manual SIP Traffic Blocking.

9.2.3 Automatic Proactive Blocking: Greylisting

Sometimes an automated blacklisting policy may be too reactive in that it begins to block traffic sources only when
they have been already “caught” misbehaving. An alternative automated and sterner policy, greylisting, may be
used instead to block suspicious traffic coming from an interface preemptively.

The basic idea is very simple: Permit signaling traffic from unknown sources for only a temporary “probation
period”, accept it if some legitimate criteria is established within this period and block (greylist) it otherwise. In
this case, all packets coming from the IP address will be blocked at OS layer for maximum performance. This
concept is stronger than blacklisting in that it doesn’t wait until a misbehavior is spotted. An attacker trying to
remain “under the radar” will not be tolerated any more. A single useless probing packet from his IP address to
an ABC SBC signaling port will get him greylisted.

To enable grey-listing, you need to establish what makes legitimate traffic. An often used criteria is completion of
authenticated SIP registration. To set up greylisting, proceed with the following steps:

• Turn greylisting on for an interface. Go to System → Interfaces → Edit → Greylist. At this moment
signaling coming over this interface from an IP address will be dropped if the criteria does not establish its
legitimacy within a strict time window.

• Define the legitimacy criteria. This is achieved using the actions Log to grey list and Log message / Event
for replies. The former immediately accepts a request source IP address. The latter does so later only when
an answer with required status code comes back and can do so for UAC, UAS or both.

• Fine-tune greylisting global parameters if needed:

– time delay in seconds to give IP a chance to prove validity,

– time period in seconds when IP can be blacklisted if repeats and did not prove validity,

– time in seconds to keep IP on blacklist,

– time in seconds to keep IP on whitelist,

– additional ports or port ranges (a:b) to check in addition to signaling ports, space separated.

Source IP addresses of cached registration bindings are implicitly accepted after receiving a successful response
from the downstream registrar. This helps with a single administrative domain: an authenticated registration is
quite a credible proof of sender’s legitimacy.

9.2. Police: Devising Security Rules in the ABC SBC 265

FRAFOS ABC SBC Handbook, Release 5.3

However in scenarios with peering domains and other scenarios where SIP devices do not register, legitimacy of
the senders must be established using some explicit criteria. To asses such a non-registering SIP sender, adminis-
trator must choose SIP transactions that demonstrate the sender is not an offender. This requires knowledge of a
site’s policy. For example, accepting an IP address based on an arbitrary 200-completed SIP transaction may be
too relaxed, as any sender of a SIP OPTIONs “PING” packet that is “PONGed” would then qualify. Insisting on
200-completed INVITEs may be too harsh on the other hand, as a canceled call attempt would result in graylisting
the caller. Therefore the acceptance policy must be chosen with knowledge of what SIP transactions shall or shall
not be accepted by the downstream SIP elements.

The qualifying SIP transactions are tagged using the “Log to grey list” and if dependent on the resulting transaction
status the “Log message / Event for replies” actions. When a transaction is processed using either action, and
completes with a matching response code, then IP address of the SIP UAC, UAS or both will be accepted and will
not be greylisted.

An example of such an A-rule is shown in Figure Greylisting Rule Example: Accept 200 REGISTERs and selected
non-REGISTER codes. It accepts IP addresses from which REGISTERs come that complete with the 200 status
code, and any other SIP requests that complete using some of the specified status codes. In all other cases, the
IP address sending a packet to the ABC SBC will be blacklisted. That includes the cases when it is a non-SIP
packet that doesn’t even make it to rule processing, a REGISTER which doesn’t result in a 200, and for example
an INVITE which completes with the 604 code.

Fig. 10: Greylisting Rule Example: Accept 200 REGISTERs and selected non-REGISTER codes

If we wanted to craft a more relaxed policy which does not inspect SIP answers coming back, we could use the
action Log to Grey List instead (Figure Rule Example: Accepting an INVITE Sender’s IP Address). It accepts all
IP addresses from which an INVITE comes. Its actual impact depends on where in the rules this action is placed.
If it was in beginning of the rules, it would only block offenders sending non-SIP or non-INVITE packets to the
signaling ports. Therefore it is typically placed after several rules that drop undesirable traffic, such as request
from well-known scanners or unsolicited OPTIONs.

Fig. 11: Rule Example: Accepting an INVITE Sender’s IP Address

We also have to care about outbound SIP requests. Answer packets coming back trigger the greylisting process
and we need to have an acceptance policy as well. Typically it is quite simple under the assumptions that requests
sent to outside express consensus to communicate with the outside IP address. Therefore installing a rule in C-
rules to accept the destination address regardless of the response coming back will form a reasonable policy. Such
a rule is shown in Figure Rule Example: Permit UAS’s IP Address for Any Replies. A destination appears on the
greylist only if it sends no answer.

9.2. Police: Devising Security Rules in the ABC SBC 266

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 12: Rule Example: Permit UAS’s IP Address for Any Replies

Note that like with blacklisting, greylisting may have side-effects when there are multiple users behind a single IP
address. A legitimate user who proves himself and promotes his IP address by the greylisting procedures makes
traffic of other users behind the same IP also legitimate.

Blacklisting and greylisting may be used at the same time. In this case the side-effects of blacklisting will prevail
as blacklisting goes first in the processing order. Then even if an IP address is accepted by the greylisting criteria,
and a misbehaving user will cause the IP address to be blacklisted, all traffic from the IP address will be blocked.

It is also important to know that ABC SBC resets greylists upon every restart and starts re-learning them. This
makes re-configuration and/or rapid failovers more robust against grey-listing innocent IP addresses. Otherwise
a change of greylisting policies could fail to accept an IP address that has been already spotted under a previous
policy. Similarly, a fail-over back and forth may also result in greylisting a legitimate IP address.

Checking the actual status of an IP address can be done on the administrative page “System → Firewall → Search
IP“, from where one can also retrieve the full current blacklist and greylist.

Fig. 13: Firewall Search IP Box Results

9.2. Police: Devising Security Rules in the ABC SBC 267

FRAFOS ABC SBC Handbook, Release 5.3

9.2.4 Manual SIP Traffic Blocking

The manual blocking is used to block well-known offending traffic using SIP-layer criteria. The SIP-layer blocking
allows to establish SIP-layer filtering criteria, and it also allows to indicate to the upstream SIP client why a request
is being denied using a SIP response code.

The reasons for using this type of blocking can be multifold: declining traffic from unsupported call agent types,
refusing to process some unsupported applications like SIP for presence, or banning traffic from SIP users that
have become unwelcome and cannot be dealt with using IP-layer blacklisting because they share IP address with
other legitimate users.

A call can be refused silently or using a SIP response using either of the following methods:

• Reply to request with reason and code. This action declines a SIP request using response code and phrase.
Optionally a header field may be attached to the response. Replacement expressions can be used in the
response phrase and header field. Multiple header fields can be introduced by putting \r\n between them.
An event of type “call-attempt” is generated for declined INVITEs.

• Drop request. This action drops a request silently and generates an event of type “message-dropped”. Events
can be grouped by a key in which case the events repeat within short interval of time (ten seconds) if their
keys differ. If there is no key, the event does not repeat until offending messages stop to arrive for ten
seconds.

If either action is executed, rule processing stops immediately and no further rules are processed. Neither do
the requests count towards limits (see Section Traffic Limiting and Shaping) if the limits are placed behind the
reply/drop actions.

The remaining question is how to discriminate between trusted and untrusted traffic. The ABC SBC can use any
of its rule conditions described in Section Condition Types. The most often used conditions include:

• SIP header elements (Section Blocking by User-Agent, From and Other SIP Headers Fields)

• Source IP address (Section Blocking by IP Address)

• Registration status (Section Blocking a User by his Registration Status)

• Geographic origin (Section Blocking by Geographic Origin)

The following subsections documents the cases that are commonly used to filter out unwanted traffic based on
different message elements. In the simple case, the tested elements are checked against fixed values like in
the Figure The Drop Rule Options where the SIP requests are dropped if their Header Field User-Agent contains
“scanner” or “sipcli”. If the list of values to check against is longer, devising many rules may become cumbersome,
use of provisioned tables is recommended as shown in the Section Provisioned Table Example: URI Blacklist.

Blocking by User-Agent, From and Other SIP Headers Fields

SIP request elements include many header fields upon which an administrator may make an accept/reject decision.
For example, a SIP user may be found problematic and blocking his IP address is impossible because there are
other legitimate SIP users behind the same IP address. In such a case it makes perfect sense to block all SIP
requests with an offending address in the SIP From header field. Alternatively a whole domain can be blocked the
same way. Conditions for this, From URI and From Domain, are available in ABC SBC rules, others are described
in the Section Condition Types.

Not all header field names are available in the SBC rule conditions, and some may be even custom-made. There-
fore there is also the possibility to refer to a header field by header name. That can be particularly useful when
checking for some well known User Agent types that show their signature in the User-Agent SIP header field.
Cases have been reported when this type of filtering has been used to block traffic from SIP devices with new
untested firmware causing registration storms. Other common case is blocking well-known SIP scanners, one of
such being known as “friendly-scanner”. Their packets look like this:

OPTIONS sip:100@212.79.111.155 SIP/2.0.
Via: SIP/2.0/UDP 37.187.191.144:5064;branch=z9hG4bK-3414626242;rport.
Content-Length: 0.

(continues on next page)

9.2. Police: Devising Security Rules in the ABC SBC 268

FRAFOS ABC SBC Handbook, Release 5.3

(continued from previous page)

From: "sipvicious"<sip:100@1.1.1.1>;
→˓tag=64343466366639623133633401333731383339333235.
Accept: application/sdp.
User-Agent: friendly-scanner.
To: "sipvicious"<sip:100@1.1.1.1>.
Contact: sip:100@37.187.191.144:5064.
CSeq: 1 OPTIONS.
Call-ID: 383887304209490351968881.
Max-Forwards: 70.

A rule to detect, drop and record such requests from inbound (A) rules is shown in Fig. Inbound rule for refusing
calls from a certain user agent.

Fig. 14: Inbound rule for refusing calls from a certain user agent

If the number of blocked elements become too long to have a separate rule for each of them, one can also utilize
the provisioned tables as shown in the Section Provisioned Table Example: URI Blacklist.

Blocking by IP Address

It is possible to block a single IP address or multiple IP addresses matching a text pattern with actions configured
with Source IP condition in the inbound (A) rule see Fig. Inbound rule for refusing calls from a certain IP address.

9.2. Police: Devising Security Rules in the ABC SBC 269

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 15: Inbound rule for refusing calls from a certain IP address

Blocking by IP Address Range

The simplest way to block a range of IP addresses is to create a Call Agent for such an IP address range, see Fig.
Definition of a Banned Call Agent, and create an inbound (A) rule for this call agent without conditions that will
refuse all messages from it see Fig. Rules for a Banned Call Agent,

9.2. Police: Devising Security Rules in the ABC SBC 270

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 16: Definition of a Banned Call Agent

Fig. 17: Rules for a Banned Call Agent

Additionally this rule example uses the “Log Event” action to alert administrator of traffic violating his policy.
(see Section Diagnostics Events for more details about using diagnostic events)

Blocking a User by his Registration Status

Inbound (A) rules offer a possibility to enforce an administrative policy by blocking the request (usually an IN-
VITE) if its initiator is or is not registered by using condition Register Cache. It also can be used as some form or
caller prioritization if used together with CAPS limit. The test against the register cache is made using one of the
following keys:

• From URI (AoR+Contact+IP/port)

• From URI (AoR+IP/port)

• Contact URI (Contact+IP/port)

• To URI (AoR)

• R-URI (Alias)

Such requests can be refused with Refuse call with reason and code action, see Fig. Inbound rule for refusing
calls based on registration status.

9.2. Police: Devising Security Rules in the ABC SBC 271

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 18: Inbound rule for refusing calls based on registration status

Blocking by Geographic Origin

The ABC SBC can also block or otherwise discriminate incoming requests based on the country code of the region
from which they are coming. The region is determined using a Geo-IP database from request’s source IP address.
The example here generates custom events when a request comes from France.

Fig. 19: Inbound rule for Reporting on French Request Originators

9.2. Police: Devising Security Rules in the ABC SBC 272

FRAFOS ABC SBC Handbook, Release 5.3

9.2.5 Traffic Limiting and Shaping

Like any other Internet-based service VoIP servers can be the target of denial of service attacks. By generating
a flood of SIP requests a malicious attacker can overload the VoIP infrastructure. Such overload conditions can
negatively impair established calls and calls in progress and need to be controlled. Similarly, authorized users of
a SIP service can access the service in a way that reaches abusive dimension and needs to be controlled as well.
For example, a provider offering a flat-rate service to consumers may find that whole PBXs are connected to the
SIP accounts. This would result in losses since the pricing calculation anticipated different usage calculation.
Therefore traffic control is also needed in such a situation.

The ABC SBC offers several forms of controlling SIP and RTP traffic which are described in this Section. These
are implemented as rules which can be placed in A or C rule-basis. If used in inbound A-rules, the limitations
refer to traffic coming from a Call Agent or Realm. If used in outbound C-rules, the limitations refer to traffic
sent to a Call Agent or Realm. In either case the limitations only affect calls that passed the limitation action.
Reversely, calls that have not been processed using a limit action are not subject to such a limit. To make sure
that all calls within a realm or call-agent are subject to a limit, the action must be placed in beginning of the rules
without any condition.

More often, the call limits need to be related to a subset of traffic. For example only one parallel call may be
permitted per IP address. The criteria can vary depending on use-case and therefore the limiting actions have
an optional variable key parameter. The key specifies which traffic portion the limit applies to, and can use
replacement expressions (see Section Using Replacements in Rules). All messages (and no other) that have the
same key count towards the limit. Two often used keys are source address and combination of source address
with From URI. The former (denoted as “$si”) checks all traffic coming from any single IP address against the
respective limit. The combination of source address with AoR (denoted as “sifu“) allows that requests with
distinct From URIs count against their own limits even from behind a single IP address – particularly useful when
the IP address belongs to a PBX which serves numerous SIP addresses.

When the “Is global key” option is kept unchecked, the indexing key is scoped to the entity the rule belongs to
(Realm or Call Agent). This means that the real key used to index the corresponding measurement is a compound
of the indexing key and the entity. If, however, the key is declared to be global (by checking the “Is global key”
option), the index is solely determined by the key entered in the “Key attribute“ field. This means that if the same
indexing key is used in another rule block (for example for another Realm or Call Agent), the limit will be applied
jointly for calls on which this other rule block applies.

The traffic limiting actions also generate events when traffic does violate the limits – see Section Security Events.
This is important for administrators to be able to notice such conditions and consider how to deal with such
violations further: Whether to recognize these as illegitimate and continue blocking the originators, or to lift the
limits if they find the above-limit usage has a legitimate reason. Only one event is produced for a detected excess
of traffic limit, regardless of its duration. However, if the excess calms down and emerges again after ten seconds,
a new event will be generated.

To make sure that an administrator can be alarmed even before a limit hits and starts to drop traffic, some of the
traffic limit actions have the “soft-limit” option that creates diagnostic notice alarms but does not drop any traffic.
Also, in the case that the traffic violates the “hard” limit repeatedly, the option “Report abuse” allows to block the
offending traffic source – see Section Automatic IP Address Blocking for additional information.

The following call limit actions are available for use in A- and C-rules:

• Limit parallel calls - Set limit for number of parallel calls. New calls arriving in excess of this limit will be
declined using the 403 SIP response. To make it easier to find the cause, the response includes a Warning
header field with an additional hint: Warning: Caps limit reached. For example, to limit the number of
parallel calls from the ABC SBC to a Realm or Call Agent, add a Limit parallel calls action to its outbound
rules. Incomplete call attempt in progress whose context resides in memory also count temporarily towards
the limit together with established call. That’s an important security aspects: it makes sure new calls in
progress are declined and cannot establish calls later that would exceed the limit. To limit the number of
parallel calls from a Realm to the FRAFOS ABC SBC, add a Limit parallel calls action to the Realm’s
inbound rules. The action includes the following parameters:

– Limit parallel calls – the actual number of parallel calls permitted.

– Key Attribute and Is Global Key optionally define which partition of traffic counts towards the limit.

9.2. Police: Devising Security Rules in the ABC SBC 273

FRAFOS ABC SBC Handbook, Release 5.3

– SIP response code and SIP response reason specify what type of reply is sent in response to a request
that violated the limit. Optionally, header fields such as Warning may be added to the response using
the SIP Header option. This option is intended to provide upstream client and troubleshooters with
additional information explaining why a request is

– Soft-limit value allows to specify the “soft” threshold which if exceeded will generate a diagnostic
event.

– Report abuse checkbox makes occurrence of a traffic limit violation count against automated IP ad-
dress blocking score.

– SIP response code and SIP response reason specify what type of reply is sent in response to a request
that violated the limit. Optionally, header fields such as Warning may be added to the response using
the SIP Header option. This option is intended to provide upstream client and troubleshooters with
additional information explaining why a request is

• Limit CAPS - Set limit for SIP request rate. If the request rate exceeds this limit, new call attempts
will be declined using a 403 SIP response. Note that when a request is authenticated using SIP digest,
it results in two transactions, both of which count towards the CAPS limit. New dialog-initiating (e.g.
SUBSCRIBE) and out-of-dialog (e.g. unsolicited NOTIFY) requests also count against the CAPS limit and
will be dropped if they exceed it. SIP requests belonging to a dialog that has previously passed the limit test
will all be accepted. Retransmissions do not count towards the SIP limit. The action includes the following
parameters:

– Limit CAPS – the number of permitted SIP requests per unit of time. These two values define the
permitted signaling rate.

– Time Unit – length of time unit in second. Even if the number of permitted requests grows propor-
tionally with length of time unit and yields the same signaling rate limit, longer time units are more
permissive as they can accommodate more intense bursts.

– Key Attribute and Is Global Key optionally define which partition of traffic counts towards the limit.

– SIP response code and SIP response reason specify what type of reply is sent in response to a request
that violated the limit. Optionally, header fields such as Warning may be added to the response using
the SIP Header option. This option is intended to provide upstream client and troubleshooters with
additional information explaining why a request is being dropped.

– Soft-limit value allows to specify the “soft” threshold which if exceeded will generate a diagnostic
event.

– Report abuse checkbox makes occurrence of a traffic limit violation count against automated IP ad-
dress blocking score.

• Limit Bandwidth (kbps) - Set bandwidth admission limit for codecs. If current total sum of maximum
bandwidth as signaled in SDP exceeds this limit, the signaling request will be rejected using a 403. For
example, the limit of 30 kbps will reject any incoming INVITE that, among others, offers G.711 codec (64
kbps) in its SDP using a SIP 403 response. This type of limit only serves as initial admission control and
does not guard the actual RTP usage. A sender is not hindered to send more RTP traffic than advertised in
SDP unless the Limit Bandwidth per Call action is applied.

The action includes the following parameters:

– Limit Bandwidth (kbps) – maximum permitted bandwidth

– Key Attribute and Is Global Key optionally define which partition of traffic counts towards the limit.

– SIP response code and SIP response reason specify what type of reply is sent in response to a request
that violated the limit. Optionally, header fields such as Warning may be added to the response using
the SIP Header option. This option is intended to provide upstream client and troubleshooters with
additional information explaining why a request is being dropped.

– Soft-limit value allows to specify the “soft” threshold which if exceeded will generate a diagnostic
event.

– Report abuse checkbox makes occurrence of a traffic limit violation count against automated IP ad-
dress blocking score.

9.2. Police: Devising Security Rules in the ABC SBC 274

FRAFOS ABC SBC Handbook, Release 5.3

• Limit Bandwidth per Call (kbps) - Set limit for RTP traffic per call. This action observes all RTP streams,
video and audio, of a call, and if the actual traffic rate exceeds the limit, the RTP packets will be dropped.
This action has the only parameter, the threshold value in kbps. RTCP traffic is not counted against the
bandwidth limit and this bandwidth limit is only effective if RTP anchoring is enabled for the call. The limit
includes RTP packets including RTP headers and excludes lower layer overhead (UDP,IP). For example for
g.711 that makes 68.69 kbps (64kbps codec, 4.69 kbps RTP) and excludes 10.91 kbps overhead (3.13 RTP,
7.81 IP). For GSM the audio and RTP bandwidth is 17.69 (13 kbps GSM, 4.69 RTP), IP and UDP overhead
is 10.94 kbps.

Note that limits are only applied to SIP requests that encounter the respective limit rule. That means that a newly
introduced limit does not affect established calls. It also means that if call processing is stopped due to declining
or dropping the call before the limit rule is evaluated, the declined call attempt doesn’t towards the limit. Example
of such rules where calls are declined before counted against a CAPS limit is shown in Figure Order of Rules
Matters: Dropped Calls Don’t Count Towards Limits.

Fig. 20: Order of Rules Matters: Dropped Calls Don’t Count Towards Limits

The most delicate part when setting the limits is finding the appropriate threshold values. Definition of appropriate
values depends on what type of SIP User Agents are being used and how. Specific aspects causing higher traffic
rates need to be considered to make sure that legitimate traffic will not be discarded:

• soft-clients often support SIP for presence (RFC3856). The amount of traffic, especially when such a client
starts, can be high and grow with the length of the buddy list.

• Registration throttling (Section Registrar off-load) is often used to keep NAT bindings alive. The limit rate
needs to be adjusted to the throttling rate.

• PBXs and Integrated Access Devices and most importantly trunking peers send traffic for many users from
a single IP address.

Traffic Limiting and Shaping by Example

In the following example we implement a policy to shape incoming traffic for a public SIP service for personal
use. The example is intended to be rather liberal and sets the threshold relatively high for the anticipated use to
make sure it doesn’t break some traffic-intensive use-cases.

We start policing VoIP calls in the first rule. To make sure that even a nervous caller attempting to reach a busy
destination doesn’t exceed his limits, we permit 10 requests every 30 seconds for every source IP address (the
“$i” in the key parameter). Note that the actual number of call attempts may be lower by one half, since SIP
authentication attempts preceding the actual call attempts count towards the limit as well and double the number
of requests.

The next rule throttles registrations. We know that several popular consumer Integrated Access Devices (IADs)
offer several SIP accounts. We want to make sure that the devices don’t get locked out when they boot and send
REGISTERs for all of their SIP accounts. We also need to account for the authenticating transactions. Therefore
we set the limit to 10 requests every thirty seconds and key the limit by combination of IP address and From URI.

9.2. Police: Devising Security Rules in the ABC SBC 275

FRAFOS ABC SBC Handbook, Release 5.3

That means that the limit can only be exceeded by requests coming from the same IP address and bearing the
same From URI. In other words, even if many REGISTERs come from behind a single IP address the limit will
only be hit if they use the same URI. If the URI is registered from an IP address at a rate beyond the limit, parallel
registrations of the same URI from behind a different IP address will not count towards the same limit.

Further we impose a general limit on all SIP transaction types. Especially soft-phones are known to send a lot of
“noise”: SIP PUBLISHes, SUBCRIBEs, NOTIFYs, OPTIONS and other request types. We permit 28 requests
every three seconds from every single IP address.

Last but not least: we limit the number of parallel calls to 5 per IP address.

Fig. 21: Limit on number of Call Attempts per Second

Bandwidth limits by example

The ABC SBC can limit the bandwidth admitted for a calls’ media streams. The action Limit Bandwidth (kbps)
has as a parameter the bandwidth in kilobits per second to which the call should be limited, see Fig. Example of
Shaping Rules. Attempts to set up calls exceeding this bandwidth will be rejected using a 403 response.

Fig. 22: Example of Shaping Rules

9.2. Police: Devising Security Rules in the ABC SBC 276

FRAFOS ABC SBC Handbook, Release 5.3

9.2.6 Call Duration Control

By limiting the maximum duration of calls one can on the one hand prevent “bill shocks” when some customer
fails to terminate a call in a proper manner. Additionally, attackers might try to deplete the resources of the SBC
by generating calls with long durations causing a saturation of the call processing capacity of the SBC.

Setting Call Length Limits

The Set call timer action sets the maximum duration of the call, in seconds. If a call exceeds this limit, the ABC
SBC sends a BYE to both call participants and generates an event of the call-end type.

Fig. 23: Set call length

If this action is executed several times, the call duration will be the lowest call timer set, regardless of the order in
which the actions are executed.

Controlling SIP Session Timers (SST)

SIP Session Timers (SST) is a mechanism defined in RFC 4028 that can be used to make sure that calls are ended
after a period of time even if one endpoint disappeared without properly terminating the call. This is especially
important if calls are billed using data derived from the signaling messages, but also makes sure that unused
resources are released properly. In order to achieve this, periodically a refresh of the SIP dialog is done by using
a re-INVITE or an UPDATE. If the refresh request fails, e.g. if it times out, per the standard SIP mechanisms the
dialog is torn down and related resources are released.

Note that the session refresh, i.e. the re-INVITE or UPDATE that is done here, is a normal re-INVITE or a
normal UPDATE, so all the normal rules regarding the re-negotiating of the session apply. For example, a re-
INVITE which is triggered by Session Timers may modify the session by selecting another codec or other codec
parameters.

SIP Session Timers is a mechanism to negotiate which of the endpoints in the SIP dialog does this refresh. After
the negotiation that happen with some specific headers (Session-Expires/x,Min-SE) in the INVITE or UPDATE
and the responses to it, it is clear who has the refresher role.

The remote UA may leave it open who should be the refresher (by not including a refresher=uac or refresher=uas
parameter in the Session-Expires/x header). In this case the ABC SBC has the possibility to select whether the
ABC SBC should take on the refresher role or the remote UA should do it. This can be selected by the ‘let remote
refresh’ option. It may be safer to do the refresh from the ABC SBC, as some UAs do not perform the refresh
properly, even if they have said they would do it. On the other hand, if NATs are involved, there is no keepalive
and the refresh interval chosen is too long, only the remote UA which is behind the NAT may be able to do the
refresh thus reopening the NAT, in which case it may be safer to let the remote UA do it.

The ABC SBC supports SIP Session Timers even if one or both endpoints do not have support for Session Timers.

There are separate actions for enabling SST on the caller and the callee leg

• Enable SIP Session Timers (SST) - caller leg

• Enable SIP Session Timers (SST) - callee leg

The SST mechanism also negotiates the time after which the refresh is done. The timer parameters - proposed
Session Expiration and Minimum Expiration, in seconds - can be set individually for each leg.

9.2. Police: Devising Security Rules in the ABC SBC 277

https://tools.ietf.org/html/rfc4028.html

FRAFOS ABC SBC Handbook, Release 5.3

Setting RTP Inactivity Timer and Keepalive Timer

These two timers help to detect situations in which due to some network failure a phone call has already stopped.
It requires media anchoring to be enabled.

It often occurs that a call party becomes suddenly unavailable and a call remains “hanging”. This may happen for
example due to a software error in a softclient or a disconnected IP network. To make sure such a call doesn’t
continue, an RTP inactivity timer may be configured. If configured and either party stops sending RTP, a call is
discontinued by the ABC SBC after the preconfigured period of inactivity. Eventually an event of type “call-end”
is reported with originator field set to “rtp-timer-terminated”.

The timer can be configured under “Config → Global Config → RTP handling → RTP timeout”. If set to zero,
the timer is deactivated.

To make sure that a peering SIP device using a similar kind of timer doesn’t disconnect a call which just occurs
to produce no media (voice inactivity detection, on-hold), the ABC SBC may also be configured to generate
RTP keep-alive packets. If set to a non-zero value (in seconds), the ABC SBC sends keep-alive RTP packets
periodically.

This timer can be configured under “Config → Global Config → RTP handling → RTP keep-alive frequency”.

Both timers can be also set on a call-by-call basis under parameters of media anchoring (see Section Media
Anchoring (RTP Relay)).

9.3 Collect Events: Gathering Usage Data in the ABC Monitor

Knowledge is never too dear. Sir Francis Walsingham, Queen Elizabeth’s Principal Secretary

An administrator can only craft reasonable security policies if he knows what is actually going on. He must have
access to detailed history of SIP user behavior, security incidents and unusual activities. This is indeed the purpose
of “events” as introduced in Section Events (optional). Events are detailed reports on user activity that encompass
registration, call attempts, and security incidents.

Many individual events can identify need for administrator’s attention. For example if a packet is dropped because
it is coming from a SIP scanning software, an administrator may want to act and ban the source IP address.

Some events in isolation may alone not indicate a threat and need to be monitored by their quantity and trend.
For example, an isolated authentication failure can be caused by a password typo during SIP authentication pro-
cess. However if many such occur in series, chances stand high it is some kind of password-guessing attack as
described in Section Password Guessing Attacks. Being able to recognize such repetition allows the ABC SBC
to act automatically and even ban offending traffic without the human administrator’s intervention. (see Section
Automatic IP Address Blocking).

Most of the events are always produced by the ABC SBC, and administrators don’t need any extra action to enable
them. They just need to be able to understand and analyze them as shown in Section Analyze: Finding Patterns in
Events using the ABC Monitor.

The rest of this Section is concerned with the cases when reporting events is optional and needs to be turned on
explicitly to alert on possible departures from a SIP site’s policy.

9.3. Collect Events: Gathering Usage Data in the ABC Monitor 278

FRAFOS ABC SBC Handbook, Release 5.3

9.3.1 Reporting Security Events

As security events failures are reported when a particular administrator-defined policy is being enforced. The only
exception is an authentication failure which is always considered a security threat.

The events are reported only if corresponding actions are executed and proper parameters are set. Therefore it is
the rule conditions that primarily determine when to trigger an event.

The following table summarizes how rules must be set up in order to generate proper events. All shaping actions
report limit violations if event reporting is enabled. So does the drop action when executed on an incoming SIP
request, and log-reply when a request is rejected downstream.

Particularly the log-reply action is important as in some cases the downstream SIP elements may know better than
the ABC SBC that a request is illegitimate. This is for example the case in a scanning attack when an attacker
attempts to probe all possible SIP addresses. The ABC SBC is unaware of individual users and is not in position
to repel such an attack straight off. However the downstream server knows subscriber details and can reveal by
proper SIP response codes that the requests are for invalid destinations. It may respond back with 604 for non-
existing users or 403 for forbidden addresses. This way the ABC SBC can infer from the response codes received
from downstream that the upstream request originator should be better blocked.

Event Type Required Action Required Parameter Additional Information
limit Limit parallel calls Report Abuse Traffic Limiting and Shap-

ing
limit Limit CAPS Report Abuse Traffic Limiting and Shap-

ing
limit Limit Bandwidth Report Abuse Traffic Limiting and Shap-

ing
limit Limit Bandwidth per

Call
none Traffic Limiting and Shap-

ing
message-
dropped

drop Blacklist by firewall if re-
peated

Manual SIP Traffic Block-
ing

log- reply Log message for replies Log to Firewall blacklist

9.3.2 Setting up Diagnostic Events

Diagnostic events are also of great importance to the process of continuous refinement of security policies and
bridging the gap between liberal and strict policies. A too liberal policy may lead to exposure of a security gap.
On the other hand a too strict policy that filters all unknown SIP elements is likely to break some SIP features.
Diagnostic events allow to strike a compromise, in which a policy remains open and diagnostic events report
on suspicious traffic patterns. An administrator can then inspect these in details and choose whether they are
legitimate and can be preserved, or whether they shall be better banned.

An example of such policy is reporting on call from unregistered users (see Figure Rule Example: Report Calls of
Unregistered Users). If an administrator feels uncertain whether such calls are legitimate or not, he may initially
just observe them. To do so, he places log-action in an appropriate condition and then watches the reported events.
These include detailed information about the calls in question and provide the administrator with insights needed
for further refinement of his policies. He may for example find out that the call attempts are coming from a peering
domain and are perfectly legitimate. Or he may find that they have no traceable originator and should be better
blocked.

The following table lists actions that can be used to provide customized reports on observed activities. The shaping
actions can include an additional lower limit to report on high traffic before the “hard limit” is hit and traffic begins
to be declined. The action-log can report on any conditions identified in the ABC rules: unexpected URIs, traffic
from unregistered users, and anything else that can be captured by conditions specified in Section Condition Types.
The message-log event is used analogously, in addition to the event details it also collects the actual traffic that
triggered the event.

9.3. Collect Events: Gathering Usage Data in the ABC Monitor 279

FRAFOS ABC SBC Handbook, Release 5.3

Event Type Required Action Required Parameter Additional Information
limit Limit parallel calls Soft Limit Traffic Limiting and

Shaping
limit Limit CAPS Soft Limit Traffic Limiting and

Shaping
limit Limit Bandwidth Soft Limit Traffic Limiting and

Shaping
limit Limit Bandwidth per

Call
none Traffic Limiting and

Shaping
action- log Log Event none Diagnostics Events
log- reply

Log message for
replies

Log as Event

message- log
Log received traffic

none Diagnostics Dashboard

9.4 Analyze: Finding Patterns in Events using the ABC Monitor

See and keep silent. Sir Francis Walsingham, Queen Elizabeth’s Principal Secretary

This section shows how the Monitor can be used when looking for security threats to a SIP service. Detecting
presence of attacks and understanding their nature is a pre-requisite for devising proper policies that eliminate
harmful and permit legitimate traffic.

Regular monitoring of a SIP service is proven to be the best way to keep operation smooth. Many administrators
practice the simple and powerful habit to check their monitoring equipment as the very first thing in their working
day. This section shows what to look for in the Monitor. Once a suspicious pattern is identified, the procedure is
simple: keep filtering all regular events out until the events causing the pattern remain. Inspect their details and
devise a proper policy.

In the following paragraphs we will walk you through the typical “stops” an administrator shall visit during his
routing service check.

A good starting point is the “Overview dashboard”. Here a DoS attack can be discovered quickly as the security-
related events gain dominance rapidly. Even Distributed DoS attacks can be spotted there because increased
aggregate number of security events will reveal their presence, regardless how well masqueraded they are. This is
shown in two 10-minutes examples in Figures Total Number of Events in a Usual Situation and Total Number of
Events when a Peak in IP Address Occurs Greylisting.

Under normal operation, as shown in the upper part, the event types are balanced. There is a quite high number
of greylisting events which is typical for a public SIP service exposed to scans from the public Internet. However,
the number of these events still remains in the same order of magnitude as the other events. It is followed by the
three registration events, also a typical situation for a public VoIP service in which telephones are turned off and
on.

What should catch attention though is a situation in which an event type begins to dominate. This is the case in the
lower diagram where greylisting events appear in unusual high quantities. That’s good time to visit the Security
Dashboard and find out more specifics.

9.4. Analyze: Finding Patterns in Events using the ABC Monitor 280

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 24: Total Number of Events in a Usual Situation

Fig. 25: Total Number of Events when a Peak in IP Address Occurs Greylisting

The Security Dashboard is introduced in more details in the Section Security Dashboard. The dashboard aggre-
gates events that have relevance to security of a SIP service. Presence of authentication events points at password-
guessing attacks (Section Password Guessing Attacks), presence of log-reply events at scanning attacks (Section
Scanning Attacks), and presence of dropped-message events at rejected attempts to violate SIP site’s security poli-
cies. So do Limit events unless they limit violation reaches an extend of a Denial of Service Attack (Section
Denial-of-Service Attacks).

Not all SIP attacks have the ambition to ruin or gain control of a SIP service or a SIP user identity – some have
the very simple motivation to find policy gaps that mistakenly permit phone calls. Such attempts are best spotted
in the Toplist Dashboard as discussed in the Section Dial-out Attempts.

The following subsections detail on how to identify typical threats. Note that real incidents as recorded by
FRAFOS are shown here that cannot be easily reproduced and may therefore include screenshots of previous
ABC Monitor version with slightly different graphics.

9.4.1 Password Guessing Attacks

How would you feel if someone stole your password and was able to initiate and receive your phone calls, and all
of it at your expense?

Password guessing attacks are really irritating: they are aiming at acquiring a user’s password by guessing all
thinkable variants of trivial passwords. The guesses are performed by machines. Once successful, the attacker
can impersonate his victim and make phone calls on his behalf. The good thing is these attacks relatively easily
manifest themselves by an abnormally high number of failed authentication attempts. If an attacker tries to stay
under the radar, the total number of failures may not be apparent. Even then, however, the failures become easily
visible when tied up to the attacker’s IP address or geographic region. Such a situation is easily discovered in the
Security Dashboard. A snapshot of the dashboard under attack is shown in the Figure Events Reported during
anEvents Reported during an Authentication Attack. The toplist reveals that three of the ten most offending IP
addresses come from the same subnet beginning with 200 and they are all clustered in South America.

9.4. Analyze: Finding Patterns in Events using the ABC Monitor 281

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 26: Events Reported during anEvents Reported during an Authentication Attack

This intelligence is good enough to take counter-measures and lock the offenders by using some blocking tech-
niques introduced in the Section Police: Devising Security Rules in the ABC SBC.

An investigative administrator may go further and study the attacker’s background. He may look at event details,
see if these are attempts to register or make a phone call, what URIs are being used, or even return to the Home
Dashboard, filter events by IP address and find out about all other activities of the offender. He may also filter the
events from this offender out to see if this massive attack hasn’t overshadowed another less intense one.

9.4.2 Scanning Attacks

Would you be irritated if you found someone fiddling with your house door’s lock? Then get some nerves with
SIP services operating on the public Internet: This is happening every second and is called “scanning attacks”.

Scanning attacks are attempts to send SIP messages to various SIP addresses to find out if the server is connecting
calls to them. Very often, attackers dial-out a telephone number many times with various prefixes in attempt to find
a gap in dialing plan that will let them through. The destination number is often a premium number that generates
revenue for its owner. Scanning attempts typically result in an increased number of failed authentications when
the SIP service policy requires authentication, or some 403s (Forbidden)/480s(off-line)/604s(no such URI) when
the service is not serving a particular destination. Alone this information may be useful for an attacker – finding
out that a destination exists may encourage him to mount a password-guessing attack against it.

9.4. Analyze: Finding Patterns in Events using the ABC Monitor 282

FRAFOS ABC SBC Handbook, Release 5.3

Therefore it makes sense to check “Log Reply” events in the Security Console and find senders who are trying to
reach many non-existing addresses or whose request often fail for other reasons. Such are often indeed originators
of scanning attacks. We clearly see in the Monitor (Figure Scanning Attacks Shown on Security Dashboard) that
the in the observed period the log-reply events peak up shortly.

Fig. 27: Scanning Attacks Shown on Security Dashboard

The relatively flat distribution across IP address leaves us with a question whether that was a coincidence or
an orchestrated distributed attack. In such cases administrator’s insight is needed to judge the “Friend or Foe”
dilemma. We discuss this further in the Section Distributed Attacks.

9.4.3 Denial-of-Service Attacks

Denial of service attacks (DoS) are simply excessive amounts of traffic targeted on a site with the sole purpose
of impairing its service partially or completely. The ABC-SBC includes various counter-measures, probably the
most effective one being the automated blocking described in Sections Automatic IP Address Blocking.

Presence of a DoS attack is best detected by the shaping actions that set traffic limits and report on their violations
using limit events as documented in Section Traffic Limiting and Shaping. Adequate care is needed when devising
the limits to match legitimate traffic patterns otherwise legitimate traffic could be shaped and reported on as abuse.

Once the limits are exceeded the offenders appear on the Security Dashboard. If the excessive traffic recurs and
Auto-blocking is turned on, the offending IP addresses will be blocked.

9.4. Analyze: Finding Patterns in Events using the ABC Monitor 283

FRAFOS ABC SBC Handbook, Release 5.3

An example of such a situation is shown in Figure Excessive Traffic Captured on a Security Dashboard. The limit
event peaks come in quantities on timeline around 11:30 and in Hong Kong in the map. Further analysis, which
is not shown in the Figure, reveals that a single User Agent Type is sending total of 5 requests per second using
several distinct URIs. An administrator may then judge if his limits are set correctly and revealed an actual DoS
attender, or if his limit criteria have been to strict.

Fig. 28: Excessive Traffic Captured on a Security Dashboard

9.4. Analyze: Finding Patterns in Events using the ABC Monitor 284

FRAFOS ABC SBC Handbook, Release 5.3

9.4.4 Distributed Attacks

Probably the closest non-computer analogy of a distributed attack is cross-fire when a target is exposed to an attack
from many sides.

Distributed networking attacks are indeed a sophistication of other attack types that attempt to gather destructive
force while remaining under radar screen. To obtain this explosive mix, the attacks are mounted from multiple
sources. The most popularized distributed attack is the distributed denial of service attack (DDoS). However any
other attack forms can be mounted in the distributed form and gain in invisibility and strike power.

The SBC can actually filter out substantial parts of a distributed attack on its own as shown in Section Automatic
Proactive Blocking: Greylisting. The greylisting technique filters traffic which does not appear to do explicit harm
yet it could have been probes prior to a real attack. It may be therefore worth to keep eye on the whitelisting
and greylisting statistics. See the Figure Network Statistics Dashboard Capturing a Failover Situation in Section
Network and Statistics Dashboard.

Still it may be useful to detect presence of a distributed attack. A way to examine validity of a situation is to
compare the number of registrations (over 3 thousands in the example shown) and the number of greylisted IP
addresses (around 70,000). The order of magnitude difference here shows there are many more IP addresses
causing useless if not harmful traffic than those originating legitimate traffic.

Another place worth looking at is the Overview Dashboard and break-down of events by type, see Figure Total
Number of Events when a Peak in IP Address Occurs Greylisting. While distributed attacks are more or less good
in hiding their source, their presence can still be detected by their intensity, i.e. by number of certain event types
that depart from values experienced under normal situation.

9.4.5 Dial-out Attempts

One of the very common attack forms is dial-out attempts. Technically it is the simplest possible attack and yet
it can provide high gains to the attacker. It is simply trying to dial telephone numbers to see if the attacker can
connect to them without authorization.

We have shown techniques that can discover such attacks in a generic way. If the attacker tries too hard and fast,
his efforts will be exposed by the limit checks that serve the purpose of DoS detection (Section Denial-of-Service
Attacks). If the attacker is not making good guesses about the service’s numbering plan, his attempts will be
discovered using the response-checking technique used also for discovery of scanning attacks (Section Denial-of-
Service Attacks). The attacker may be smarter though: he can seek for unprotected telephone numbers at low pace
and using some educated guesses about dialing plans.

So if the attacker manages to remain “under radar” we still have to find out that someone is trying. The simplest
way is to visit the “Top Lists Dashboard” – it shows a number of attempts and completed calls sorted by URI.
Abnormal number of call attempts or even completed calls will appear here, even if the signaling rate remained
moderate and the caller “hit” valid phone numbers. Therefore the daily-check routine for an administrator shall
include visiting the “toplist Dashboard” and inspecting events of the most active users.

The most active users appear in the “toplist dashboard” sorted in descending order. The example screenshot in
Figure Example: Toplist of Attempted and Completed Calls gives us a quite clear picture: a user whose name
begins with “fmat” attempts many more times calls than anyone else in the observed period of time. It is also
unusual that the same user does not appear in the top-list of completed calls.

9.4. Analyze: Finding Patterns in Events using the ABC Monitor 285

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 29: Example: Toplist of Attempted and Completed Calls

To verify if this is a legitimate user, the same method can be used as introduced in Section HOWTO Find a Needle
in the Haystack: Iterative Event Filtering: iterative filtering. When you narrow down the events to those originated
by a suspicious From URI, the other toplists will show values relating to the specific originator. If for example,
the destination toplists shows the same destinations only with varying prefixes, we know this was an attempt to
break through. Example of such call attempt details are shown in Figure Example: List of Attempted Destinations.
Obviously someone is trying to use a SIPCLI tool to call a number 48957372266 with varying prefixes (011, +,
9011, etc). The attempts are slow to remain under radar screen: they attempt every five minutes. They always
yield the SIP response code 403 (Forbidden).

Fig. 30: Example: List of Attempted Destinations

9.5 Practices for Devising Secure Rule-basis

While we have shown in previous sections how to police traffic, collect diagnostics information and analyze it
there is still a remaining question: how to put all of this together in a consistent configuration using the ABC SBC
rules. The way the rules are compiled can have significant impact on the logic of the service.

When devising the rule-base, the following important choices must be made:

• Whether to use Media Control or not. Relaying media (Section Media Anchoring (RTP Relay)) provides
the ABC SBC with more control and insight into calls at the price of performance and media latency. Also it
is a necessity when NAT traversal (NAT Traversal) needs to be implemented, IP addresses of infrastructural
elements behind an ABC SBC need to be hidden, transcoding (Section Transcoding) or RTP-to-SRTP con-
version (Section RTP and SRTP Interworking) is needed. If used, which is nowadays the default choice, the
latency impact can be mitigated by geographic dispersion (see Section Introducing Geographic Dispersion
for more information on what difference geographic distribution makes in a cloud environment).

9.5. Practices for Devising Secure Rule-basis 286

FRAFOS ABC SBC Handbook, Release 5.3

• Whether to use Topology Hiding or not. Topology Hiding obfuscates signaling so that it is hard for an
external party to find IP addresses of the infrastructural elements behind the ABC SBC . We are describing
the rules to be used for topology hiding in the Section Topology Hiding. Note that obfuscation of SIP traffic
may make its analysis quite difficult. If used tracing of traffic using ABC Monitor is recommended.

• How to organize policing rules. A reasonable practice is to start with rules that identify and instantly drop
undesired signaling traffic before “heavier-processing” rules, such as media control or database queries
begin. We show our recommendations in the Section Devising a secure rule-base.

9.5.1 Topology Hiding

Some service providers are worried about disclosing IP addresses of their infrastructure to third parties, attackers
and competitors. Unfortunately the SIP protocol does such a disclosure in a grand style: SDP payload shows
IP addresses from/which media is sent, Contact header-field shows the IP address of an end-point, and so does
pre-RFC3261 Call-ID header-field. Via, Route and Record-Route header-field disclose the path of a SIP message
exchange. Other standardized and / or proprietary header fields can also carry IP addresses.

Therefore service providers concerned about such disclosures prefer obfuscation of the respective SIP message
elements. It needs to be pointed out though, that what makes life harder for attackers makes it similar hard or even
harder for service operators. Correlating messages with each other for sake of troubleshooting is much harder
when they are modified.

In the following subsections, we will review the default topology hiding behavior and how to make it more trans-
parent or more obfuscated.

Default Address Hiding

The default configuration of the ABC SBC tries to strike a good balance between the two extremes, full disclosure
and full obfuscation. Already the back-to-back user-agent (B2BUA) design of the ABC SBC contributes signif-
icantly. The whole SIP path, as disclosed in Via, Route, and Record-Route header fields is split in two call-legs,
each of them terminated by the ABC SBC. As result, each SIP dialog party sees the SBC as its peer in these
Header fields. Additionally the ABC SBC by default rewrites dialog information (the triple Call-ID, From-tag,
To-tag) so that IP address present in pre-RFC3261 implementations Call-ID is obfuscated.

If more signaling transparency is need than this default behavior implements, transparent dialog ID can be enabled
by an action as shown in the next Section. Also in some rare scenarios, the downstream elements in the SIP path
may need to inspect the Via stack for the upstream leg. The ABC SBC reintroduces it when the following action
is enabled:

Show Via

Transparent and Non-Transparent Dialog ID

The other concern is Call-ID – old-fashion SIP implementations pre-dating RFC3261 followed the RFC2543
specification and disclosed its address in Call-ID header-field. To make sure that the addresses do not get disclosed
through this header-field when out-of-dialog or dialog-initiating requests are created by an elderly SIP User Agent,
the ABC SBC can replace the Call-ID values with obfuscated values.

The choice whether to do is is administrator’s. By default the ABC SBC does change the Call-ID Header Field
value.

We recommend that administrators consider preserving the Call-ID for sake of troubleshooting. Leaving it un-
changed makes correlation of incoming and outgoing SIP messages significantly easier. Enabling it is easy, what
needs to be done is to place the following action in a Call Agent’s or Realm’s rules:

Enable transparent dialog IDs

Another advantage is that some non-standardized SIP extensions may want to take reference to a Call-ID value
which becomes invalid once the ABC SBC changes it.

9.5. Practices for Devising Secure Rule-basis 287

FRAFOS ABC SBC Handbook, Release 5.3

Hiding Addresses in Well-known SIP header-fields

When an operator is indeed concerned about disclosing internals of a Call Agent, the very step is to make sure
that occurrences of the Call Agent’s address in well-known header-fields are replaced with ABC SBC ‘s. Doing
that is as simple as turning the Topology Hiding checkbox on under Call Agent’s attributes. Once enabled all the
following header fields will be rewritten accordingly:

• P-Asserted-Identity (RFC 3325)

• P-Preferred-Identity (RFC 3325)

• Diversion (RFC 5806)

• History-Info (RFC 4244)

• Remote-Party-ID (proprietary pre-3325)

• Call-Info (RFC 3261)

• Warning (RFC 3261)

Note that if the Warning header field is obfuscated, it is denoted using an additional ;topoh parameter. This makes
it clear that the address in the header-field is not genuine – otherwise a troubleshooter may be misled.

Hiding Contact Header in REGISTER

The Contact header is by default obfuscated by the SBC in all dialog-initiation transactions. Contact header field
in REGISTER requests remains however untouched. If obfuscation is desirable, ABC SBC’s register cache must
be used that replaces the original Contacts with aliases.

The Section Registration Caching and Handling provides details about configuring registrar cache. This may be a
reasonable option to be turned on alone for its “shock absorbing” and “NAT keep-alive” capabilities.

Hiding All Other Header Fields

Additional header-fields, standardized (Service Route RFC 3608) or proprietary, may appear and convey IP ad-
dresses. The ABC SBC only obfuscates the documented header-fields and doesn’t interfere with others. If other
header-fields are present and disclosure of IP address is a concern, the administrator can remove them at the risk of
affecting the purpose they are serving. He can either remove the specific header-fields or use header field whitelist,
i.e. remove all but well-known header-fields. SIP manipulation is described in detail in the section SIP Mediation,
of particular interest is the action set header whitelist.

Concealing Media

Similarly like with SIP, the ABC SBC can put itself in the middle of the path and present itself to each call as its
peer while hiding the other party. If the ABC SBC doesn’t do it, IP address used for sending/receiving media will
be seen in SDP and in the actual RTP packets.

To conceal the media sender/receiver, the following action must be enabled:

Enable RTP anchoring

The downside is that all media visits the ABC SBC, while increasing media latency and bandwidth imposed on
the server. A detailed discussion can be found in the Section Media Handling .

9.5. Practices for Devising Secure Rule-basis 288

https://tools.ietf.org/html/rfc3325.html
https://tools.ietf.org/html/rfc3325.html
https://tools.ietf.org/html/rfc5806.html
https://tools.ietf.org/html/rfc4244.html
https://tools.ietf.org/html/rfc3261.html
https://tools.ietf.org/html/rfc3261.html
https://tools.ietf.org/html/rfc3608.html

FRAFOS ABC SBC Handbook, Release 5.3

Preventing SIP Digest Leak:

In order to effectively prevent malicious UAs from requesting a SIP Basic Authentication Digest from another UA
with which a call has been established, it is necessary to take some measures to prevent authentication requests to
be forwarded to UAs from other UAs that should not send any authentication requests.

For Call-Agents facing single end-user UAs, a simple method can be used to effectively block these authentication
requests: 2 UAC auth actions are configured in the A-rules of the Call-Agent facing the end-user UAs (one toward
“caller”, and one toward “callee”). These actions shall be configured with a bogus username and password which
will be used to reply the authentication requests from the malicious UA.

For Call-Agents representing a trunk line, a simple header blacklist / whitelist can be used to effectively filter
out the following header fields:

• Proxy-Authenticate

• WWW-Authenticate

Preventing Resource Exhaustion Attacks:

To effectively prevent the SBC from being subject to resource exhaustion attacks (flooding based) but also from
high traffic peaks, it is necessary to configure so called Server Transaction limits (see Server Transaction limits).

9.5.2 Devising a secure rule-base

Developing a reasonable security policy may be a delicate task for a SIP service administrator. A too strict policy
may too easily “throw the baby out with the bathwater” and impair legitimate traffic. The other extreme, a too
liberal policy, may be too inviting for an attacker. Finding the right balance between serving users and protecting
them from attackers requires understanding of the service goals and risks and drawing a balance between them.

The policy represented by the ABC rules also has performance implications associated with it. Some rules, such
as database lookups, have higher latency and lower throughput than others.

We therefore suggest that policies are crafted in order of increasing complexity, starting with rules that instantly
reply certain requests and continue to more complex rules. Basically, all undesirable SIP messages should be
eliminated by rules in the initial rule-base part before processing for the accepted messages starts in the other part.
The following subsections show examples of such rules in such order.

Shaping the Signaling Rate

It makes sense to begin processing with a check against SIP rate limits. Placing the check in the very beginning
makes sure that all incoming SIP requests are checked against these limits including requests that are dropped by
rules.

In Figure Rule Example: CAPS Shaping we are showing a simple rule example for sake of this Section. The rule
checks all incoming SIP messages against a request rate and declines messages in excess of the limit.

Fig. 31: Rule Example: CAPS Shaping

9.5. Practices for Devising Secure Rule-basis 289

FRAFOS ABC SBC Handbook, Release 5.3

More sophisticated examples for shaping rules have been given in Figure Limit on number of Call Attempts per
Second in Section Traffic Limiting and Shaping by Example.

Instant Responses

Many requests come that do not require any sophisticated decision making: the right action is just to send a reply
instantly. The reply can be positive or negative. Positive replies are typically sent in answer to some SIP User
Agents’ SIP-layer NAT keep-alives. Negative answers are sent when requests request some unsupported service,
do not comply to some local URI conventions, or come from a User Agent type known to malfunction.

The following rule examples show both cases: positive reply (Figure Rule Example: Confirming SIP Keep-alives)
for keep-alive messages and negative replies to decline a request for unsupported Message Waiting Indication
server (Figure Rule Example: Declining an MWI Request).

Fig. 32: Rule Example: Confirming SIP Keep-alives

Fig. 33: Rule Example: Declining an MWI Request

Dropping

With SIP requests who appear a security threat, dropping them silently is a safer choice than declining them. The
less information an attacker gets, the harder it is for him to find a security gap in a SIP service. If an IP address is
sending clearly offending traffic, it may even make sense to ban it entirely.

A typical reason for deploying such a restrictive rule is elimination of SIP scanner traffic. SIP scanners are
automated tools that probe Internet address space to see if there are some SIP services running. Such tools are
even publicly available1. When such a tool finds a responsive SIP service, it continues looking for legitimate SIP
addresses and it may even proceed to mounting a password-guessing attack. Such attacks are real: Once you start
a SIP service on the public Internet, it takes no longer than few hours until the first scanning packets arrive. Note
however that filtering such traffic is only eliminating naively crafted attacks that advertise themselves as such.
More sophisticated attacks will certainly not do it and must be detected and repelled using other methods such as
traffic shaping.

Fig. 34: Rule Example: Eliminating Traffic from SIP Scanners

1 SIP Vicious: https://github.com/sandrogauci/sipvicious

9.5. Practices for Devising Secure Rule-basis 290

https://github.com/sandrogauci/sipvicious

FRAFOS ABC SBC Handbook, Release 5.3

The rule has an important option turned on: “Blacklist by firewall if repeated”. That means if the offending traffic
appears repeatedly, the originator’s IP address will be blacklisted.

Database Checks

By now, we have eliminated most of the unwanted traffic: we have declined excessive traffic, gracefully handled
SIP-layer keep-alives, declined politely messages for unavailable services and dropped obvious security threats.
The remaining traffic has been reduced to a level where we can deploy more expansive policy checks and dig
in database. Often there are offending users identified by their URIs. A straight-forward way to eliminate their
traffic is to provision a list of such users and block SIP traffic if it comes from such users. Figure Rule Example:
Prohibited URIs shows a rule that looks up SIP requests From URI in such a table and if the URI is found, drops
the request silently.

Fig. 35: Rule Example: Prohibited URIs

More Limits

We may also want to constrain the number of parallel calls. We didn’t place such a limit in beginning of our
rule-set. The reason is that too many call attempts are rejected in the initial part of rule-set and count towards
the limit too. When we place the parallel call limit in the rule-base after all unwanted traffic is rejected, the call
attempts we chose to decline won’t count towards the limit.

Figure Rule Example: Limit Parallel Calls shows rule for enforcement of maximum five parallel calls per single
IP address. Also note that in this rule, no soft-limit warning is enabled and limit violations add to the security
score computed by automated blocking (Section Automatic IP Address Blocking).

Fig. 36: Rule Example: Limit Parallel Calls

Diagnostic Events

Often SIP messages do appear whose purpose is not entirely clear. Devising a policy that drops them may be
premature – they may have some legitimate use which the administrator doesn’t understand. It is therefore a good
practice to observe them before considering a policy adjustment. This moment of rule processing is perfectly right
for this purpose: all traffic that shall be dropped is dropped already.

Example of such is shown in Figure Rule Example: Report Calls of Unregistered Users. This rule reports on all
non-REGISTER requests for users who have not registered previously. This may be perfectly reasonable for a
peering trunk and quite suspicious for a residential user. Gathering these diagnostic events puts an administrator
in position to analyze the traffic and create well-targeted policies.

9.5. Practices for Devising Secure Rule-basis 291

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 37: Rule Example: Report Calls of Unregistered Users

Processing Legitimate Traffic

At this stage of rule processing we have eliminated well-known offending traffic and reported on suspicious traffic.
It is time to devise rules that process the traffic considered legitimate: mediation rules, media processing rules,
topology hiding, etc. The most important fact for sake of this Section is placement of these rules: they are placed
in the very end of a rule-base after all other checks have eliminated unwanted traffic.

Figure Rule Example: Processing Legitimate Traffic shows such rules: they implement registration caching and
media anchoring to facilitate NAT traversal and off-load the infrastructure behind the ABC SBC . These two rules
also contribute to topology hiding: use of media relay hides the actual RTP receivers and registration caching
hides the registered contacts.

Fig. 38: Rule Example: Processing Legitimate Traffic

9.5. Practices for Devising Secure Rule-basis 292

Chapter 10

Preview of Experimental Features

This chapter summarizes features that are scheduled to appear in future releases and may, under circumstances,
become available earlier in experimental releases. The availability, maturity and scope of the features is subject
to change without prior notice. Consult FRAFOS professional services if you wish to inquiry about use of these
features.

10.1 Using Two-Factor Authentication for Users

Two-factor authentication (2FA) is a new experimental feature that helps to preserve security of a whole VoIP
system even when security of a component is compromised. What sometimes happens is that PBX passwords leak
in various ways and stolen passwords are used to make fraudulent calls that appear legitimate. The 2FA system
allows to manage “shadow passwords” for SIP users. If a user’s account begins to show irregular patterns, identity
of the user can be verified using this shadow password. The shadow password is a short string of digits (PIN)
which is stored internally at the SBC in parallel to user’s SIP credentials.

The system works as follows. On his or her first attempt to make a call, a user is challenged to enroll by submitting
a PIN code using DTMF. The user must remember the PIN code for future verification. Subsequent calls work
as normally as long as the status of the user doesn’t change. The status can be changed manually from “ok” to
“soft-limit” by the administrator or an automated tool such as the FRAFOS ABC Monitor. When a user attempts
to initiate a call in the “soft-limit” status, he will be challenged to prove his identity using his PIN code. If the user
fails to submit the proper PIN code, his status will change to “hard-limit” and further calls will be blocked using
an announcement. Otherwise the verification timestamp will be stored and the user will not be prompted anymore
for some convenience period of time.

This basic scenario documented below is programmed using ABC rules and can be adjusted to the needs of a
specific scenario.

10.1.1 Prerequisites

For the system to work, the following preparations must be made:

• the ABC SBC must be up and running in cloud configuration with a designated configuration master. This
allows changes of user status to propagate to all attached SBCs.

• An administrative account and password must be known for use by SBC to manipulate the user status.
Ideally a special user is created for this purpose using “System → Users → Create User“ . In our examples
below, we are assuming a user rpcuser with password rpcrpc.

• the PIN database must be created. To create the database, use “Tables → Add New Table“ on the configu-
ration master. Make sure you choose 2FA as the table type.

293

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 1: Two factor authentication: Add a New PIN Table

• a system is required to manipulate user status. This can be done manually by editing the provisioned table, or
by this-party tools using XML-RPC, or by deploying an extension to FRAFOS ABC Monitor. An example
of XML-RPC use is shown below.

#!/usr/bin/python

(continues on next page)

10.1. Using Two-Factor Authentication for Users 294

FRAFOS ABC SBC Handbook, Release 5.3

(continued from previous page)

import xmlrpclib
import ssl
if hasattr(ssl, '_create_unverified_context'):

ssl._create_default_https_context = ssl._create_unverified_context
find IP address of config master: grep MASTER /data/sbc/etc/sbc-pullconf.conf
servernew = xmlrpclib.Server('https://rpcuser:rpcrpc@192.168.0.83:1443/rpc.php')
data = {"key_value":"sip:3@abc.com","status":"soft-limit","pin":"1111"};
print servernew.tables.insert_update_rule('twoFA',data);

• a loopback CA bound to a loopback interface must be setup. The 2FA is running on a loopback interface
so that multiple realms can use the same logic by forwarding traffic to loopback, and the 2FA logic doesn’t
interfere with the actual realms rules. The following screenshots show how to set up the signaling interface,
media interface and the actual CA. The interfaces must use systems physical “lo” interface. There must be
also a realm to which the CA belongs.

10.1. Using Two-Factor Authentication for Users 295

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 2: Loopback signaling interface for two factor authentication
10.1. Using Two-Factor Authentication for Users 296

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 3: Loopback media interface for two factor authentication

10.1. Using Two-Factor Authentication for Users 297

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 4: Loopback Call Agent

10.1. Using Two-Factor Authentication for Users 298

FRAFOS ABC SBC Handbook, Release 5.3

10.1.2 Rules for Two Factor Authentication Processing

As mentioned bellow, the actual rules for two factor authentication processing will be tied to a loopback interface.
This allows to share the rules for multiple Call Agents, in that the Call Agents forward relevant requests to the
loopback interface. This is achieved by rewriting userpart of request URI to indicate the desired action and
rewriting the hostpart to the loopback address 127.0.0.1.

The following screenshot shows how the loopback rules are formed. They assume that the user part of the request
URI indicates what shall be done with INVITEs for the caller. Whether this is a request from a new user who
needs to be enrolled, or a user whose status shall be verified, or a user whose request shall be rejected using a
voice announcement.

Fig. 5: Loopback Rules

There are two actions: Two factor authentication which guides an existing user through a verification dialog.
If the user types his proper PIN using DTMF, the action updates user’s verification timestamp and the user can
continue using the service without further disruptions.

The other action, Two factor auth-enrollment, prompts a user to submit his PIN. The PIN is then later used to
verify identity of the user.

The rule actions have a couple of parameters. The most important parameter is that of the RPC URI – this is the
address of the configuration master and legitimate username and password. Both actions update the PIN database
based on their completion status. The audio filenames can be changed for a different user experience. RESTful
URIs can be optionally used to notify external applications when a rule action finishes with success or failure.

The parameter “Source IP” can be used to set the remote IP address which is recorded with the two factor authen-
tication record in the database. As the processing is executed after being looped on a loopback interface, the real
remote IP may be passed on, e.g. by adding a header ‘P-ABC-Source-IP’ with the correct remote IP. That can be
used here with the value ‘$H(P-ABC-Source-IP)’.

10.1. Using Two-Factor Authentication for Users 299

FRAFOS ABC SBC Handbook, Release 5.3

10.1.3 Rules for determining User Status and discriminating by it

The more sophisticated part of the rules discriminates how to treat respective users. An example of such is shown
in the following screenshot.

The very first rule retrieves the user status from the current database. The table attributes, such as PIN and status,
are then available for processing as call variables.

The first condition selects users whose status is set to “hard-limit”. In that case, incoming INVITEs are forwarded
to the loopback interface with “reject” in userpart of request URI, and rejected from there.

The next rule targets users for whom no records are available. Their INVITEs are forwarded to loopback for
enrollment.

Subsequent conditions try to determine whether the user is in the soft-limit status, and how recently he has
verified his identity. If the last verification is too long ago (24 hours in this example), the INVITE is forwarded to
the loopback interface for PIN verification.

Fig. 6: User Discrimination in Two factor authentication Ruleset

If none of these conditions matched, the rule processing continues “as usual”. That’s the case when user status is
“ok” or if the user’s identity was verified recently.

10.1. Using Two-Factor Authentication for Users 300

FRAFOS ABC SBC Handbook, Release 5.3

10.1.4 Routing Rule to Connect Two Factor Authentication Processing and User
Discrimination

There is one remaining piece to connect the user discrimination and 2FA processing rules: a routing rule. The user
discrimination rules have already set the loopback address in request URI and defined a variable “goto_loopback”.
We still need to act upon these. This is fortunately easy to set up:

Fig. 7: Two Factor Authentication Routing Rule

10.1.5 Scenario Modifications

The two-factor authentication scenario can be modified in many different ways using the ABC rules. The period
for which a user doesn’t have to be re-validated may be extended or shortened. The IP address of a request can be
checked against the IP address from which the identify was verified the last time (last_verified_from_ip) – then a
successful verification only validates calls from the same IP address. The way calls from a user in hard-limit status
are declined can be changed. Note however, that the 2FA application is still in experimental status and untested
scenarios may or may not work as expected.

10.2 AWS: Reputation Lists

Monitor-steered firewalling allows to combine Monitor intelligence about misbehaving users and ABC SBC’s
capability to filter out their traffic before it causes harm. It is based on the notion of reputation list and works as
follows: an ABC Monitor collects events from all associated SBCs as usual. It uses its data-streaming logic to
identify misbehaving traffic sources and posts such to a reputation list. SBCs are subscribed to the list, receive a
notification when a new IP address is published by the ABC Monitor, and block the source then.

Use of the ABC Monitor to decide which IP addresses to block is particularly advantageous for several reasons:

• the ABC Monitor collects big data about users and their behavior and is therefore in a very good position to
make sophisticated decisions which IP addresses should be blocked.

• the centralized nature of the ABC Monitor allows to convey problematic IP address to all managed SBCs as
soon as any of them detects them

• the ABC Monitor has a global view of multiple ABC SBC and can identify misbehaving traffic sources even
when they spread their traffic to remain low profile on each managed SBC but their total traffic is beyond a
critical mass.

Currently, the reputation list is facilitated using AWS Simple Notification Service (SNS). It is not necessary for
the ABC Monitor and ABC SBC to run on AWS but both must have access to AWS SNS service.

10.2. AWS: Reputation Lists 301

FRAFOS ABC SBC Handbook, Release 5.3

10.2.1 Setting Up ABC SBC for Use of Reputation List on AWS

Before you begin, the following prerequisites must be set up in AWS and in the ABC SBC configuration:

• In AWS, there must be an SNS topic, to which the Monitor is allowed to write and from which the ABC
SBC is allowed to read.

• AWS Identity must be properly configured on the ABC SBC under “Global Config → AWS”. Set AWS
region for the SNS, and key id and secret key for identity that can subscribe to the SNS topic. We recommend
that you set up a special IAM user with privileges limited to receiving SNSs for this purpose.

• On the ABC SBC, an XMI interface must be properly set up and run on an IP address reachable by SNS.
Private IP address not connected to AWS via a VPN will be unreachable for the notifications and the sub-
scription will fail. If the ABC SBC is running on AWS, the option “Public IP address autoconfig” must be
therefore set to “Amazon Method”.

• RESTful interface for processing notifications must be enabled on the XMI interface. To do so, choose the
XMI interface name under “Global Config → Misc → RESTful interface XMI name “. Make sure that
the port number under “Global Config → Misc → RESTful interface XMI port” is open in the SBC’s
security group.

To subscribe to the SNS, find “System → Firewall → Subscription to AWS Notification Service”, click “Sub-
scribe” and include the SNS topic’s ARN. After the subscription is successfully completed, the IP addresses
learned from the reputation list appear under “External FW blacklist”.

10.2.2 Setting Up ABC Monitor for Use of Reputation List on AWS

• In AWS, there must be an SNS topic, to which the Monitor is allowed to write and from which the ABC
SBC is allowed to read.

• ABC Monitor instance must be assigned a proper IAM role to publish SNS messages.

• ABC Monitor instance must be configured to post to the topic identified by its region and ARN. The settings
are under “Settings”. In this configuration section, it is also possible to set threshold for Exceeded Limits
that may eventually cause a source address to be published on a reputation list.

• The administrator must choose which type of Exceeded Limits will place a source address on the reputation
list. To do so turn on/off checkboxes under “SNS Settings”.

10.3 Server Transaction limits

The server transaction limits allows for limiting the number of running SIP server transactions (UAS transactions).
This mechanism, when properly configured, offers a very effective protection against burst of new transactions
typical for denial of service attacks as well as against resource exhaustion (mostly RAM) on sustained high SIP
traffic or flooding attacks.

These limits will allow the administrator to be warned (events are generated toward the ABC Monitor) when
certain limits are passed (soft limits) and limits to be enforced by rejecting new transactions (hard limits) with
503 Overloaded. In case requests are actively rejected, ABC Monitor events are sent as well.

10.3. Server Transaction limits 302

FRAFOS ABC SBC Handbook, Release 5.3

Fig. 8: Transaction limit flow diagram

The diagram above shows the behavior related to transaction limits when a new request (not a retransmission) is
received. The action taken on a limit breach depends on the type of limit (soft vs. hard limit), as described above.

It is important to note that the very same transaction counter is used to check both types of limits (in-dialog and
out-of-dialog), so that the in-dialog limits must necessarily be higher than the out-of-dialog limits. The difference
between both is the guaranteed number of in-dialog transactions that can be held.

Fig. 9: Transaction limit settings

The transaction limit settings can be found in the global config parameters, in the category “SEMS”.

10.3. Server Transaction limits 303

FRAFOS ABC SBC Handbook, Release 5.3

10.3.1 Setting proper limits

The easiest method for setting proper limits is to monitor the number of UAS transactions while the SBC is
operating under normal conditions with the ABC Monitor and to apply a factor of at least 2 to these numbers
before setting limits.

For any of the transaction limits fields, a value of 0 means that the limit is deactivated.

In order to start using the limits without impairing production traffic, the soft limits should be set first, together
with the event throttling to avoid generating too many events.

Once the soft limit give satisfactory results, meaning that events are generated only on significant load peak, the
hard limits can be with a safe margin (at least +30%).

The in-dialog limits should be set very carefully, as it impacts greatly the stability of the system. In particular,
BYE requests could be lost in case the in-dialog transaction limit is set improperly.

10.4 New restify CDR process

For information about the legacy behavior, please refer to Call Data Records (CDRs).

Since ABC SBC 4.5, the new CDR-ng feature may be enabled in ABC cluster manager under Global config >
CDRs > Enable new version of CDRs (CDR-NG). The new process monitors event from a target redis list. If a
event type is matched with one from the watch list (call-end or conf-leave for example), a CDR is generated in a
CSV format. The CSV content is based on the event fields, in a format specific to the event type. The CDR is then
forwarded to a specific syslog facility.

10.4.1 CDRs Location

Please note that by default, syslog-ng is configured to redirect a process’s messages from a facility to a target file.
ABC SBC default configuration for CDR is the following :

Process Syslog facility Target file
restify-cdr LOCAL1 /data/cdr/cdrNG.log
restify-cdr LOCAL2 /data/cdr/cdrNGconf.log

10.4.2 CDRs configuration

The configuration file is located in /etc/frafos/restify-cdr.conf. The template (/etc/frafos/templates/restify-
cdr/restify-cdr.conf.tmpl) may be overloaded, as described in Command Line Reference.

By default :

• call-end, call-attempt and conf-leave event are watched

• call-end and call-attempt CDR are forwarded to the LOCAL1 facility

• conf-leave CDR are forwarded to the LOCAL2 facility

The following formats are defined by default :

• classic: 1-1 call CDRs (call-end, call-attempt)

• webconf : web conference based CDRs (conf-leave)

10.4. New restify CDR process 304

FRAFOS ABC SBC Handbook, Release 5.3

10.4.3 CDR Format

classic

• Source Realm (event field: src_rlm_name)

• Source Call Agent (event field: src_ca_name)

• Destination Realm (event field: dst_rlm_name)

• Destination Call Agent (event field: dst_ca_name)

• From user part (event field: caller_user)

• From host part (event field: caller_host)

• From name part (event field: caller_name)

• To user part (event field: callee_user)

• To host part (event field: callee_host)

• To name part (event field: callee_name)

• Local tag (ID for call) (event field: id)

• Timestamp when the call was initiated (format - 2012-05-04 02:22:01) (event field: start_tm)

• Timestamp when the call was connected (format as above) (event field: connect_tm)

• End Timestamp of the call (format as above) (event field: end_tm)

• Duration from start to end (sec.ms) (event field: duration)

• Duration from start to connect/end (for established/failed call; sec.ms) (event field: setup_duration)

• Duration from connect to end (for established call; sec.ms) (event field: bill_duration)

• SIP R-URI (event field: sip_req_uri) note: the field differ from the original CDR

• SIP From URI (event field: sip_from_uri)

• SIP To URI (event field: sip_to_uri)

webconf

• Conference identifier (event field: conf_id)

• Participant identifier (event field: participant_id)

• Call identifier (event field: call-id)

• Timestamp when user joined the conference (event field: ts-join)

• Timestamp when user leaved the conference (event field: ts-leave)

• Duration from start to end (sec.ms) (event field: duration)

• From (event field: from)

• Call local tag (if one) (event field: local_tag)

• Remote URI (event field: r-uri)

• Caller source IP (event field: source)

• Caller source port (event field: src-port)

• Callee (event field: to)

10.4. New restify CDR process 305

FRAFOS ABC SBC Handbook, Release 5.3

Tweak

CDR format may be tweaked as needed, by adding / removing fields from the configuration file entry
(/etc/frafos/restify-cdr.conf). All fields from the linked events are available via config.

10.4. New restify CDR process 306

Chapter 11

Reference of Actions

The actions are grouped as follows:

• SIP Mediation

• SDP Mediation

• Monitoring and Logging

• Traffic Shaping

• Media Processing

• SIP Dropping

• Scripting

• Register Processing

• External Interaction

• NAT Handling

• Other

11.1 SIP Mediation

Table 1: SIP Mediation
Action Name Description Parameters
Set RURI Set request URI to a new value

• new URI

See Request-URI Modifications.
Prefix RURI user Prefix userpart of request URI

• prefix string

See Request-URI Modifications.
Set RURI user Replace userpart of request URI

• new userpart

See Request-URI Modifications.
Append to RURI user Add a suffix to userpart of request

URI. The result is accumulated if
actions is used multiple times.

• suffix

continues on next page

307

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
See Request-URI Modifications.
Strip RURI User Remove leading characters of

userpart of request URI • number of leading charac-
ters

See Request-URI Modifications.
Set RURI Host Replace hostpart of request URI

• new hostpart

See Request-URI Modifications.
Set RURI Parameter Set request URI parameter

• parameter name
• parameter value

See Request-URI Modifications.
Set From Replace From Header Field Value

• From HF value

See Changing Identity.
Set From display name Replace From Display name

• new From Display name

See Changing Identity.
Set From User Replace userpart of From URI

• new From userpart

See Changing Identity.
Set From Host Replace hostname of From URI

• new From hostname

See Changing Identity.
Set To Replace To Header Field Value

• To HF value

See Changing Identity.
Set To Display Name Replace To Display name

• new To Display name

See Changing Identity.
Set To User Replace userpart of To URI

• new To userpart

See Changing Identity.
Set To Host Replace hostname of To URI

• new To hostname

See Changing Identity.
Set Contact-URI user Set the Contact-HF URI user part

used for the dialog
Available since: 4.2

continues on next page

11.1. SIP Mediation 308

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Set Contact-URI host Set the Contact-HF URI host part

used for the dialog. “Host” is the
value to set to. Replacements and
back-references are allowed. “Ap-
ply on” can be used to control on
which message type (request, re-
ply or both) the modification is to
be applied to (available since 5.1).
“Only on reply codes” can be used
to control on which reply codes the
modification is to be applied to. If
empty, replies with code less than
300. This is only effective if ‘Ap-
ply on’ is set to a value that will
affect replies (available since 5.1).
Available since: 4.5

• Host
• Apply on
• Only on reply codes

UAC auth Authenticate on behalf of UAC
against a UAS. Any request pass-
ing this action and challenged
to authenticate by a downstream
server will be resent with creden-
tials passed in the action’s param-
eters. Note that the input fields
support replacement expressions.
If i.e. password contains special
characters such as $, they need to
be escaped with a backslash.

• username
• password
• realm

See Changing Identity.
UAS auth Authenticate a UAC against

the SBC. Either HA1 or pass-
word can be provisioned on
the SBC; HA1 is safer as the
plaintext password does not
need to be saved on the SBC.
The HA1 can be calculated as
MD5(username:realm:password)
or with the tool sbc-calc-ha1 on
the command line. Can be used
together with provisioned tables
and the “Save REGISTER contact
in registrar” action to create a full
registrar.

• username
• realm
• H(A1) or password

Remove Header Removes all occurrences of a
header field. The action is applied
to initial message, newly added
header fields are not removed

• header field name

See SIP Header Processing.
continues on next page

11.1. SIP Mediation 309

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Add Header Add a new Header Field to a re-

quest
“Request or reply” parameter can
be used to control on which type of
messages the header will be added
on (available since 5.1). “Initial or
in-dialog” parameter can be used
to choose to only add the header
on initial or in-dialog requests, or
both (available since 5.1).. “Di-
rection” can be used to choose
whether to add the header on mes-
sages going towards a-leg, b-leg or
both. (available since 5.1).
Note that ‘100 Trying’ replies are
generated by the SBC. So an action
on C-rules with direction = A leg
will not work on 100-replies be-
cause they are not coming from the
B-leg. Action on A-rules will work
as fine with respect to 100-replies.
Note that replacement expressions
are evaluated once at the begin-
ning of the call (initial request) and
the result is re-used throughout the
call.

• HF Name
• HF Value
• Request or reply
• Initial or in-dialog
• Direction

Replace header value Replaces matching header field
values based on regular expression
search and replace.
“replace with” may be a call vari-
able value (ex: $V(gui.fullname)).
Also, with “replace with”, one
can use regular expression
back-references to use parts of
the expression in “match” pa-
rameter. I.e. to replace host
part in a header containing a URI,
search=`^<sip:([^@]*)@[^?;]*(.*)>`
and replace
with=`<sip:\$1@a.b.c.d\$2>`
can be used.
Note that you can only back-
reference from 1 to 9 sub-matches,
meaning that \$123 will replace as
<sub-match-1>23.

• header name
• search
• replace with

continues on next page

11.1. SIP Mediation 310

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Replace header value (on leg) Same as “Replace header value”

but acts on messages on call leg
only.
E.g. putting a rule on A rules of
CA1:
[CA1] INVITE -> [SBC] -> [CA2]
200 OK -> [SBC] rule-applied ->
[CA1]
E.g. putting a rule on C rules of
CA2:
[CA1] INVITE -> [SBC] rule-
applied - > [CA2] 200 OK ->
[SBC] -> [CA1]
Available since: 4.6

• header name
• search
• replace with

Insert or Replace header (on leg) Tries to insert a header field to
messages. Unless “replace exist-
ing” is enabled, a new header will
be added even if a header with the
same name exists. If “replace ex-
isting” is enabled, the header is re-
placed with the given value.
“Header value” may be a call vari-
able value (ex: $V(gui.fullname))
or back-reference.
Available since: 4.6

• header name
• header value
• replace existing

continues on next page

11.1. SIP Mediation 311

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Absorb Re-Invites (on leg) Absorb re-invites coming from the

leg if they are considered identi-
cal to the previous (re-)invite. The
decision is done based on: - All
headers except via, route, CSeq
and content-length match. - CSeq
is higher than the last seen (re-
)invite. - If the re-invite has a
body, the body type is SDP and
the body is identical to the previ-
ous (re-)invite except the first two
lines.
If Session-Expires percentile is set
the invite will not be absorbed if
the time elapsed has exceeded the
set value since the last relayed in-
vite. I.e. if percentile is set to
10 and last (re-)invite has session-
expires: 90, then a re-invite will be
relayed if >9 seconds has passed
since the last relayed (re-)invite
even if it is considered identical.
If Ignore Headers is set, then re-
quest headers do not affect the de-
cision on absorbing the invite or
not. This effectively means that
only the SDP is compared to previ-
ously sent SDPs for equality. Note
that the Session-Expires parameter
is still honoured if set.
If Ignore Body is set, then request
body does not affect the decision
on absorbing the invite or not.
When SDP is being checked, the
SDP seen in late-oa is also consid-
ered.
Available since: 4.6

• Session-Expires Percentile
• Ignore Headers
• Ignore Body

Relay 503 Reply (on leg) Normally, per rfc3261, 503 replies
are converted to 500 before send-
ing the reply out to the CA. With
this action, 503 replies are relayed
to the call leg it is on.
Available since: 5.1

Reply In-Dialog Request (on leg) Reply In-Dialog requests match-
ing “Method” (case-insensitive)
with a reply with the code “Code”.

• Method
• Code

See SIP Header Processing.
continues on next page

11.1. SIP Mediation 312

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Set header whitelist Removes all but mandatory and

white-listed header-fields. Names
are comma-separated, case-
insensitive and need to specify
compact forms explicitly. The list
is applied to the final appearance
of the INVITE request after all A
and R rules have been processed.

• comma-separated header-
field name list

See SIP Header Processing.
Set header blacklist Removes all blacklisted header-

fields. Names are comma-
separated, case-insensitive and
need to specify compact form
explicitly The list is applied to the
final appearance of the INVITE
request after all A and R rules
have been processed.

• comma-separated header-
field name list

See SIP Header Processing.
Update Supported header Allows simplified manipulation

with Supported header field con-
tent.
Available since: 4.5

• operator (Add / Remove /
Set tags)

• comma-separated list of op-
tion tags

See Option tags.
Update Require header Allows simplified manipulation

with Require header field content.
Available since: 4.5

• operator (Add / Remove /
Set tags)

• comma-separated list of op-
tion tags

Update Allow header Allows simplified manipulation
with Allow header field content.
Note that “Add” operator will not
add unless Allow header already
exists, set via “Set” operator or
“Default tags” are specified.
Available since: 4.6

• operator (Add / Remove /
Set tags)

• comma-separated list of op-
tion tags

• Direction
• Apply on
• Default tags

Replace URI header user Allows modifying “user” part on
headers containing a URI. I.e.
Refer-to: sip:USER@host
Available since: 5.0

• Header name
• Search
• Replace with

Replace URI header host Allows modifying “host:port” part
headers containing a URI. I.e.
Refer-to: sip:user@HOST:PORT
Available since: 5.0

• Header name
• Search
• Replace with

continues on next page

11.1. SIP Mediation 313

sip:USER@host

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Replace headers of URI header Allows modifying headers in

headers containing URIs. I.e.
Call-ID in Refer-to: <sip:user@
host?Call-ID= 55432%40ali-
cepc.atlanta.example.com> can
be manipulated with “header
name = refer-to”, “name of the
header in URI = call-id”, “Search
= 432@alice”, “replace with =
433@bob”.
Available since: 5.0

• Header name
• Name of the header in URI
• Search
• Replace with

Insert or replace headers of URI
header

Allows modifying headers in URI
of headers containing a URI. I.e.
NEW-hdr in Refer-to: <sip:user@
host?Call-ID=55 432%40al-
icepc.atlanta.example.com&
NEW-hdr=value> can be added
with this.

• Header to modify
• Header name
• Header value
• Replace if exists

See Option tags.
Add Dialog Contact Parameter Add parameters to the Contact

URI generated by the SBC • Leg: A or B
• parameter name
• parameter value

See Other mediation actions.
Set Contact-HF parameter
whitelist/blacklist

Specify which Contact header field
parameters in incoming request to
forward downstream.

• comma-separated list of pa-
rameter names

Set Contact-URI parameter
whitelist/blacklist

Specify which Contact URI pa-
rameters in incoming request to
forward downstream.
Available since: 4.6

• comma-separated list of pa-
rameter names

See Other mediation actions.
Forward Contact-HF parameters Forward all Contact header field

parameters “as is” downstream. • none

Forward Contact-URI parameters Forward all Contact URI parame-
ters “as is” downstream.
Available since: 4.6

• none

See Other mediation actions.
Translate Reply Code Translate SIP reply codes to other

value • matching reply code
• new reply code
• new reason phrase

See Other mediation actions.
Set Max Forwards Reset the number of hops a re-

quest can be forwarded to specified
value

• the new value of Max-
Forwards header field

See Other mediation actions.
continues on next page

11.1. SIP Mediation 314

sip:user@host?Call-ID=
sip:user@host?Call-ID=
mailto:432@alice
mailto:433@bob
sip:user@host?Call-ID=55
sip:user@host?Call-ID=55

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Enable transparent dialog IDs Enforce use of the same dialog IDs

on both sides of a call. To-tag op-
tion can have two values: ‘Stick to
first received to-tag’ keeps the first
seen to-tag in the early responses
throughout the rest of the dialog,
even if it changes in the final re-
ply. Re-set to-tag with final reply:
it will switch the to-tag from early
to established dialog (on first final
reply sent to caller).

• To-tag

See Other mediation actions.
Forward Via-HFs Force the SBC to keep the Via

header fields while forwarding the
request.

• none

See Other mediation actions.
Diversion to History-Info converts SIP diversion header-field

into History Info • none

See Other mediation actions.
Call transfer handling Defines the mode in which

REFERs are handled: rejection,
local processing or forwarding.
Option to reconnect if transfer
ends in 4xx during unattended
transfer. Option to not terminate
referrer leg when the unattended
transfer completes. “Only NO-
TIFY 100 & final sip replies”
option disables relaying of pro-
visional replies of transferee to
referrer as NOTIFY messages.
It can come useful in scenarios
where backup CA agent is tried
and provisional replies of latter
CA might confuse the referrer.

• REFER processing mode
• Reconnect on failure
• Do not terminate
• after transfer
• Only NOTIFY 100 & final

sip replies

See Other mediation actions.
Set SIP Timers Allows setting SIP timers per call.

Failover reduce factor is used to
divide B, F & M timers when desti-
nation call agent has a backup CA.
This allows for a faster failover.
Leaving it empty uses the default
value of 4.

• SIP Timers
• Failover reduce factor

Handle INVITE with Replaces
header

Activates internal processing of
INVITE with Replaces header • none

See INVITE with Replaces handling.
Map Replaces header Activates mapping of dialog iden-

tifiers in INVITE with Replaces • none

See Mapping Dialog-IDs in INVITEs with Replaces.
continues on next page

11.1. SIP Mediation 315

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Pin TLS Certificate To Dialog (on
leg)

This option remembers the initial
client certificate that’s used while
initiating the dialog and rejects any
in-dialog request that do not use
the same certificate.
This action requires “Verify peer
certificate” to be enabled on the
TLS Profile of the signaling inter-
face.
Note that non-tls messages, mes-
sages with no associated tls client
certificates or messages with dif-
ferent different certificates com-
pared to the pinned one will be:

• Rejected with 403 if it is an
initial request.

• Rejected with 481 if it is an
in-dialog request.

• Dropped if it is a reply or an
ACK.

When used in A rules:
• If SHA256 fingerprint is

empty, then the fingerprint
of the certificate used in the
initial request is pinned.

• If SHA256 fingerprint is
given, then it is pinned for
the dialog and the certifi-
cate used in the initial re-
quest will also be compared
against it.

When used in C rules, SHA256
fingerprint must be given.
In order to get the SHA256
fingerprint of a certificate, the
following command may be
used: openssl x509 -noout
-fingerprint -sha256
-inform pem -in <CERT>
Available since: 5.2

• SHA256 fingerprint

Set Content Type
whitelist/blacklist

Specifies which SIP payload types
(such as SDP) will be permitted. • comma-separated list of

content types

See Other mediation actions.
Enable SIP Session Timer caller-
leg

Enforce use of Session timer
• session expiration (sec)
• minimum expiration (sec)
• let remote refresh

See Controlling SIP Session Timers (SST).
continues on next page

11.1. SIP Mediation 316

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Action Name Description Parameters
Enable SIP Session Timer callee-
leg

Enforce use of Session timer
• session expiration (sec)
• minimum expiration (sec)
• let remote refresh

See Controlling SIP Session Timers (SST).
Add X-Org-ConnID header The X-Org-ConnID header field

contains a unique value that re-
mains constant for the duration of
the transaction and any dialog cre-
ated from this request.
By enabling this action, a X-Org-
ConnID header is added to every
outgoing initial SIP INVITE re-
quest product of this dialog.
The header helps to correlate calls
that have been internally redirected
(due to a 302 SIP response) or
blindly transferred (due to a RE-
FER SIP request).
The value can be retrieved
in the CDR by specifying
the keyword “$x_org_connid”
in the cdr_format (see
cc_syslog_cdr.conf).

11.2 SDP Mediation

Table 2: SDP Mediation Actions
Action Name Description Parameters
Set CODEC Whitelist Remove all but listed codecs from

SDP. • comma-separated codec-list
case insensitive

See CODEC Filtering.
Set CODEC Blacklist Remove all listed codecs from

SDP. • comma-separated codec-
list, case insensitive

See CODEC Filtering.
Set CODEC Preferences Define the order in which available

codecs are chosen. • comma-separated codec-list

See CODEC Preference.
Set SDP attribute
whitelist/blacklist

Removes specified CODEC at-
tributes from SDP payload. • comma-separated list of at-

tribute names

See CODEC Preference.
Set Media whitelist Permit only listed media types, au-

dio or video • audio,video list

continues on next page

11.2. SDP Mediation 317

FRAFOS ABC SBC Handbook, Release 5.3

Table 2 – continued from previous page
Action Name Description Parameters
See Media Type Filtering.
Set Media blacklist Remove listed media types, audio

or video • audio,video list

See Media Type Filtering.
Drop early media Drop early media (audio only).

• none

See Early Media, Ring Back Tone and Forking.
Drop SDP from 1xx replies Drop SDP from listed 1xx replies

• list of affected reply codes

See Early Media, Ring Back Tone and Forking.
Insert or Replace SDP Session At-
tribute (on leg)

Try to insert a session-level at-
tribute to all requests/replies on
call leg. Unless “replace with”
is enabled, the insertion will take
place even if an attribute with the
same name exists. If it’s en-
abled the value of the attribute with
the same name is changed to “At-
tribute value”.
Attribute name is the name to re-
place, supports replacements. At-
tribute value supports replace-
ments & back-references. Replace
with replaces if already exists.
If the attribute is “known” to the
SBC this action can remove other
forms of the attribute. I.e. in-
serting “sendonly” will remove the
previous indicator such as “inac-
tive”, regardless of the value of the
“Replace with” parameter.
Available since: 4.6

• Attribute name
• Attribute value
• Replace with

Replace SDP Session Attribute (on
leg)

Replace an SDP session attribute
on all requests/replies on a call leg.
Attribute name is the name to
replace , supports replacements.
Search is a regexp to match the
part to be replaced. Replace with
holds the value to be replaced with,
supporting replacements & back-
references.
Available since: 4.6

• Attribute name
• Search
• Replace with

continues on next page

11.2. SDP Mediation 318

FRAFOS ABC SBC Handbook, Release 5.3

Table 2 – continued from previous page
Action Name Description Parameters
Insert or Replace SDP Media At-
tribute (on leg)

Try to insert a media-level attribute
to all requests/replies on call leg.
Unless “replace with” is enabled,
the insertion will take place even
if an attribute with the same name
exists. If it’s enabled the value of
the attribute with the same name is
changed to “Attribute value”.
Attribute name is the name to re-
place, supports replacements. Me-
dia is a regexp matched against
the m= media lines to select spe-
cific ones. Supports replacements
& back-references. Attribute value
supports replacements & back-
references. Replace with replaces
if already exists.
If the attribute is “known” to the
SBC this action can remove other
forms of the attribute. I.e. in-
serting “sendonly” will remove the
previous indicator such as “inac-
tive”, regardless of the value of the
“Replace with” parameter.
Available since: 4.6

• Attribute name
• Media
• Attribute value
• Replace with

Replace SDP Media Attribute (on
leg)

Replace an SDP media attribute on
all requests/replies on a call leg.
Attribute name is the name to re-
place , supports replacements. Me-
dia is a regexp matched against
the m= media lines to select spe-
cific ones. Supports replacements
& back-references. Search is a
regexp to match the part to be
replaced. Replace with holds
the value to be replaced with,
supporting replacements & back-
references.
This action can be used for pay-
load id re-mapping if used with
RTP anchor. E.g. attr. name,
media, search, replace with values
rtpmap, .*, ^98 XYZ, 105 XYZ re-
spectively will replace payload id
98 with 105 in relayed RTP pack-
ets.
Available since: 4.6

• Attribute name
• Media
• Search
• Replace with

continues on next page

11.2. SDP Mediation 319

FRAFOS ABC SBC Handbook, Release 5.3

Table 2 – continued from previous page
Action Name Description Parameters
Disable SDP Media Disable an SDP media on all re-

quests/replies.
Media is a regexp matched against
the m= media lines to select spe-
cific ones. Supports replacements
& back-references. This action can
also remove the media line based
on the global config option “Re-
move filtered m-lines”.
Attribute name is a regexp to
match an attribute under the m=
line to be removed. Supports re-
placements & back-references.
Attribute value is a regexp to
match an attribute under the m=
line to be removed. Supports re-
placements & back-references.
I.e. in removal of media with pay-
load
m=audio 8012 RTP/AVP
102 a=rtpmap:102 telephone-
event/48000 a=content:special
“Media” would be compared
against “audio 8012 RTP/AVP
102”, “Attribute name” would
be compared to “rtpmap” or
“content” under that media
line, “Attribute value” would be
compared against “102 . . . ” or
“special” values.
Available since: 5.1

• Media
• Attribute name
• Attribute value

continues on next page

11.2. SDP Mediation 320

FRAFOS ABC SBC Handbook, Release 5.3

Table 2 – continued from previous page
Action Name Description Parameters
Remove SDP Media Attribute (on
leg)

Remove an SDP media attribute on
all requests/replies on a call leg.
Attribute name is the name to re-
move, supports replacements. Me-
dia is a regexp matched against
the m= media lines to select spe-
cific ones. Supports replacements
& back-references. Search is a
regexp to match the line to be re-
moved.
I.e. in removal of payload with id
102
m=audio 8012 RTP/AVP 102
103 a=rtpmap:102 telephone-
event/48000 a=rtpmap:103
telephone-event/8000
“Attribute name” would be
rtpmap, “Media” would be
compared against “audio 8012
RTP/AVP 102”, “Search” would
be compared to “102 telephone-
event/48000”, and would result
in
m=audio 8012 RTP/AVP
103 a=rtpmap:103 telephone-
event/8000
Available since: 4.6

• Attribute name
• Media
• Search

Insert or Replace SDP Payload At-
tribute (on leg)

Try to insert a payload-level at-
tribute to all requests/replies on
call leg. Unless “replace with”
is enabled, the insertion will take
place even if an attribute with the
same name exists. If it’s en-
abled the value of the attribute with
the same name is changed to “At-
tribute value”.
Attribute name is the name to
replace, supports replacements.
Media is a regexp matched against
the m= media lines to select spe-
cific ones. Supports replacements
& back-references. Codec is a
regexp matched against the re-
spective rtpmap=xyz <CODEC>.
Supports replacements & back-
references. Attribute value
supports replacements & back-
references. I.e. for fmtp, it is
placed as fmtp: xyz <VALUE>.
Replace with replaces if already
exists.
Available since: 4.6

• Attribute name
• Media
• Codec
• Attribute value
• Replace with

continues on next page

11.2. SDP Mediation 321

FRAFOS ABC SBC Handbook, Release 5.3

Table 2 – continued from previous page
Action Name Description Parameters
Replace SDP Payload Attribute
(on leg)

Replace an SDP payload attribute
on all requests/replies on a call leg.
Parameters are almost the same as
Insert or Replace SDP Payload At-
tribute Action. Search is a regexp
to match the part to be replaced.
I.e. for fmtp it is compared against
fmtp:xyz <SEARCH>.
Available since: 4.6

• Attribute name
• Media
• Codec
• Search
• Replace with

Limit telephony event list (on leg) Limit telephony events attribute on
all requests/replies on a call leg.
Media is a regexp matched against
the m= media lines to select spe-
cific ones. Supports replacements
& back-references. Telephony
events is a list such as 0-16,66 that
will filter out anything that is not
in it.
Available since: 4.6

• Media
• Telephony events

DTLS Setup Preference (on leg) This controls whether SBC prefers
to be ‘active’ or ‘passive’ for
DTLS setup. I.e. when used in
A-rules, if the caller signals ‘act-
pass’ setup, this controls whether
the SBC prefers to respond with
‘active’ or ‘passive’ When used in
C-rules, this can be used to con-
figure the SBC to send ‘active’ or
‘passive’ instead of ‘actpass’.
This action is only meaningful
when the RTP anchoring is in use.
Available since: 4.6

• Preference

11.2. SDP Mediation 322

FRAFOS ABC SBC Handbook, Release 5.3

11.3 Monitoring and Logging

Action Name Description Parameters
Increment SNMP counter Increment an SNMP counter • counter name

• increment

See User Defined Counters.
Log received traffic Log SIP/RTP traffic concealed

with logging into PCAP file. The
general log level is used if none is
set for that call.

• log type
• PCAP file name Use file-

name with .pcap extension.

See Diagnostics Dashboard.
Log Event Generate custom event • event text

See SEMS Parameters.
Set log level Set a specific log level for this traf-

fic.
Note: The global log level will
be applied until this Action is pro-
cessed.

• log level (see Section Refer-
ence of Log Level Parame-
ters)

See Diagnostics Events.
Log Message Use syslog facility

• log level
• message text

Log Message for Replies Report on a transaction that com-
pleted with a specific response
code. Depending on parameters,
such a report can lead to blacklist-
ing or promoting a whitelisted IP
address.
Typically used to alarm on re-
quests that were declined because
of a possible security risk. The ac-
tion can report via events, syslog
or suggest that the request origina-
tor is put on blacklist or promoted
on a greylist.

• reply codes that trigger the
reports (comma-separated
list or asterisk for any
response code)

• syslog level
• use syslog
• send an event
• Blacklist UAC IP Address
• Blacklist UAS IP Address
• Greylist UAC IP Address
• Greylist UAS IP Address

See Automatic IP Address Blocking and Automatic Proactive Blocking: Greylisting.
Log to grey list Promote a source IP address from

greylist to whitelist. • label – token that differen-
tiates internally the promo-
tion reason; choose some
short descriptive string

Disable privacy monitor mode Override global configuration for
privacy monitor mode to disable it
for certain calls.
Note that when used in C rules,
call-attempt even will still not be
generated in case B-leg refuses.
Available since: 5.1

See Automatic Proactive Blocking: Greylisting

11.3. Monitoring and Logging 323

FRAFOS ABC SBC Handbook, Release 5.3

11.4 Traffic Shaping

Action Name Description Parameters
Limit parallel calls Put a quota on number of parallel

calls for some specific part of traf-
fic identified by a key. The limit
applies separately to inbound and
outbound traffic in A and C rules
respectively and realm or CA to
which the action’s rule is linked
unless “global key” is turned on.
Exceeding calls attempts are re-
jected using 403.

• max number of calls
• key (optional) that identifies

a subset traffic
• global key
• SIP header
• soft limit
• report abuse
• SIP response code and

phrase

See Traffic Limiting and Shaping.
Limit CAPS Put a quota on number of call at-

tempts per second for a traffic sub-
set identified by a key. The limit
applies separately to inbound and
outbound traffic in A and C rules
respectively and realm or CA to
which the action’s rule is linked
unless “global key” is turned on.
Authentication counts towards the
limit as well. Exceeding calls at-
tempts are rejected using 403.

• max number of request per
unit of time

• time unit – length in seconds
• key and global key
• SIP response code and

phrase
• report abuse
• soft limit

See Traffic Limiting and Shaping.
Limit Bandwidth per Call Put a quota on RTP traffic in kbps.

A rules steer bandwidth for in-
bound calls, C rules for outbound.
Exceeding RTP traffic is dropped.

• limit (kbps)
• key and global key
• SIP response code and

phrase
• soft limit
• report abuse

See Traffic Limiting and Shaping.
Limit Bandwidth Don’t admit signaling if its codecs

in SDP exceed a limit. • limit (kbps)

See Traffic Limiting and Shaping.
Set call Timer Terminate a call if it exceeds a

limit length. • max call length (sec)

See Setting Call Length Limits

11.5 Media Processing

11.4. Traffic Shaping 324

FRAFOS ABC SBC Handbook, Release 5.3

Table 3: Media Processing
Action Name Description Parameters
Enable RTP anchoring Anchors RTP media to the ABC

SBC. Allows to centralize me-
dia forwarding. Additionally, ICE
connectivity checks and RTP keep-
alive can be introduced for an-
chored calls. If RTP timeout is in-
troduced and no RTP packet ap-
pears, the call is terminated. An-
choring is a prerequisite for other
media processing such as record-
ing. RTCP report generation
can also be configured to happen
on certain conditions described in
“RTCP Gen.”. RTP Gen. “Al-
ways” disables RTCP relay and
sends the generated RTCP (avail-
able since 4.6). “Don’t send to
RFC1918 addresses” will prevent
the SBC sending any RTP/RTCP/
Other data to RFC1918 addresses
on the leg (available since 5.0). “If
RFC1918 is in SDP or signaling”
option for “Media far end NAT
traversal” enables remote address
learning only when an RFC1918
IP is seen on SDP c= lines or is the
signaling IP for the remote end-
point in the dialog (available since
5.0). “Address locking affects the
socket pair” will lock both RTP
and RTCP socket addresses if one
of them locks before the other re-
ceives any traffic. For the socket
that is locked this way, without
seeing any traffic, the source port
is allowed to be changed with the
first packet received on that socket.
“Change SSRC” will change the
SSRC in RTP and RTCP packets
with a locally generated one. Note
that “Convert DTMF to AVT RTP”
action will force-enable this be-
havior even if it is disabled here.
For RTCP packets and SSRC re-
placement, only SSRC that is ad-
vertised in the SDP will get be re-
placed.

• Media far end NAT traversal
• Lock on addresses learned

from RTP
• Address locking affects the

socket pair
• Don’t send to RFC1918 ad-

dresses
• Enable intelligent relay (IR)
• Source IP Header field for

IR
• Offer ICE-lite
• Offer RTCP feedback
• Keepalive (sec)
• timeout (sec)
• Ignore ICE Offer
• RTCP Generation
• RTCP Interval
• Change SSRC

See Media Anchoring (RTP Relay)
continues on next page

11.5. Media Processing 325

FRAFOS ABC SBC Handbook, Release 5.3

Table 3 – continued from previous page
Action Name Description Parameters
Restrict media IP to signaling IP
(on leg)

Restricts the incoming/outgoing
RTP/ RTCP/Other to a network
which is derived by applying a
mask on the signaling IP address.
“IPv4 Mask” expects a CIDR
value. Packets coming from/going
to non- conforming addresses will
be dropped. -1 means everything
is allowed for IPv4 RTP. 0 means
IPv4 RTP packets will only be ac-
cepted if signaling is also IPv4
(and not v6). 32 means pack-
ets should come from and go to
the same address seen in signaling.
Applies to RTP, RTCP and other
packets. “IPv6 Mask” is the IPv6
counterpart of the “IPv4 Mask”
parameter. “Allow SDP IP” will
additionally allow communication
with the IP specified in respective
c= line of the SDP (available since
5.2).
This action requires the RTP an-
choring to be enabled as well.
Available since: 5.0

• IPv4 Mask
• IPv6 Mask
• Allow SDP IP

Force RTP/SRTP Enforces conversion to the re-
quested protocol in C-rules. In A-
rules it only admits specified pro-
tocol and declines requests other-
wise. Requires “RTP anchoring”
to be enabled.

• Key exchange mechanism
(DTLS/SDES)

See RTP and SRTP Interworking
continues on next page

11.5. Media Processing 326

FRAFOS ABC SBC Handbook, Release 5.3

Table 3 – continued from previous page
Action Name Description Parameters
SRTP Fallback to RTP (on leg) On the leg using this action, if a re-

quest is sent with SRTP and the re-
mote endpoint responds with 488,
the request is retried with RTP.
This works for both initial INVITE
and re-INVITEs / UPDATEs.
If temporary is false, once the leg
switches to RTP, further SDP of-
fers to it will use RTP. If it is true,
then further O/A exchange will
still try SRTP if it normally would
(i.e. through force-srtp action or
the other leg sending SRTP).
Note that if the action is on A-rules
and SRTP is converted to RTP with
Force-RTP action on C-rules, then
then once a RTP-fallback occurs
on A-leg, SRTP will not be retried
on re-invites going to a-leg even
when temporary is set.
This action is only meaningful
when the RTP anchoring is in use.
This action will override forcing
SRTP via Force RTP/SRTP action.
Available since: 5.1

• Temporary

continues on next page

11.5. Media Processing 327

FRAFOS ABC SBC Handbook, Release 5.3

Table 3 – continued from previous page
Action Name Description Parameters
Activate audio recording Record audio into stereo WAV file

or a SIPREC recording server.
Recording type-specific parame-
ters will be available based on the
value of the destination parameter.
When WAV file recording is used,
the call will be recorded as a stereo
WAV file where left & right chan-
nels contain audio from A & B
legs. call-end events will contain a
link to the file holding the record-
ing. The link will be indexed by
the audio_file field.
When destination starts with sip:,
SIPREC recording mode will be
used. SIPREC-specific parame-
ters will be available to config-
ure options specific to the SIPREC
recording mode.
WAV-specific parameters:
Discard non-established will dis-
card the recording if the call ends
before it is established.
SIPREC-specific parameters:
Start announcement will play
an audio announcement before
recording starts. Beep tone &
Beep tone interval, if set, will
play a tone at the specified in-
terval during the recording. Stop
announcement will play an an-
nouncement before the recording
stops. Caller URI, Caller display
name, Callee URI, Callee display
name are used to fill the participant
fields in SIPREC metadata XML
(rfc 7865) sent in the INVITE
message to the SIPREC server.
Additional header fields can be
used to add extra headers to the
messages sent to the SIPREC
server. SIPREC Extension Data
Enhancements adds the <exten-
siondata> section to the SIPREC
metadata XML, and fields in the
extension data section can be set
using the respective parameters.
RURI will set <apkt:request-uri>,
Realm will set <apkt:realm> and

• destination
WAV-specific:

• Discard non-established
SIPREC-specific:

• Start announcement
• Beep tone
• Beep tone interval
• Stop announcement
• Caller URI
• Caller display name
• Callee URI
• Callee display name
• Additional header fields
• SIPREC Extension Data En-

hancements
• SIPREC Extension Data |

RURI
• SIPREC Extension Data |

Realm
• SIPREC Extension Data |

Additional header fields
• Do not start yet

continues on next page

11.5. Media Processing 328

FRAFOS ABC SBC Handbook, Release 5.3

Table 3 – continued from previous page
Action Name Description Parameters

<apkt:in-realm>, Additional
header `fields will be added as
<apkt:header>. Do not start yet
changes the behavior to not start
the recording immediately. When
this option is enabled, the record-
ing can be started when SIPREC
server sends an in-dialog INFO
requests with x-ASC-Recording
header set to started and stopped
by sending the same header with a
value of stopped.
All header inputs can take multiple
headers by separating them with
rn.

See Audio Recording
Activate transcoding Activate transcoding for list of

codecs. Listed codecs are added to
SDP and transcoded if selected.
When ‘strict SDP answer’ is en-
abled, while sending SDP answer,
SBC will only add the transcoding
codecs that were in the offer. Oth-
erwise, all the codecs in the codec
list are added to the answer so that
we may avoid transcoding if the
UA is able to send them.

• comma-separated codec list
• strict SDP answer

See Transcoding
continues on next page

11.5. Media Processing 329

FRAFOS ABC SBC Handbook, Release 5.3

Table 3 – continued from previous page
Action Name Description Parameters
Convert DTMF to AVT RTP Convert detected DTMF

to RTP/AVT packets
(RFC4733/RFC2833) Direc-
tion parameter sets on which
direction to apply the conversion
on (available since 4.6). E.g.
setting it to “To B leg” on C rules
would apply the conversion on
DTMF generated by A leg (caller).
Direction defaults to “To B leg”
and “To A leg” in A and C rules
respectively. Note that this action
will make the SBC replace the
SSRC and sequence number in
relayed RTP/RTCP packets with
locally generated ones. For RTCP
packets and SSRC replacement,
only SSRC that is advertised in
the SDP will get be replaced.
“Default volume” parameter sets
the volume when if the SBC can
not figure out the volume by other
means. Defaults to 20 (available
since 5.0). “Force volume” pa-
rameter forces the volume param-
eter to always be effective (avail-
able since 5.0). “Default dura-
tion” parameter sets the duration
of the generated DTMF if the
SBC cannot figure it out my any
other means (available since 5.0).
“Force duration” forces the dura-
tion parameter to always be effec-
tive (available since 5.0).
This action can be used to con-
vert DTMF received via SIP INFO
messages or inband DTMF when
used together with “Activate in-
band DTMF detection” action.

• Direction
• Default volume
• Force volume
• Default duration
• Force duration

See Other mediation actions.
Convert DTMF to SIP INFO Same as “Convert DTMF to AVT

RTP” except the end result is
DTMF in SIP INFO messages.
When used in A rules, DTMF
coming from A leg is sent as SIP
INFO to B leg. When used in C
rules, DTMF coming from B leg is
sent as SIP INFO to A leg.
“Relay AVT RTP” parameter can
be used to control whether to drop
RTP AVT packets to also relay
them.

• Relay AVT RTP

See Other mediation actions.
Refuse call with audio prompt see SIP Dropping bellow

continues on next page

11.5. Media Processing 330

FRAFOS ABC SBC Handbook, Release 5.3

Table 3 – continued from previous page
Action Name Description Parameters
Join meet-me conference Make a call join a conference.

• Enter room via keypad
• Room
• System-generated

rooms/PINs
• Room PINs provisioned ta-

ble
• Provisioned Table API user
• Provisioned Table API pass-

word
• Prune generated room when

they’re older than (days)
• Minimal room length
• Unacceptable rooms
• Room prefix
• Split Room number and par-

ticipant ID
• Position to split room
• Room is PIN protected
• PIN
• Use room’s PIN as admin

PIN
• Play participant name
• Participant recording file-

name
• Multi-Language support

(MLS)
• MLS prompt directories

Meet-me conference set PIN Set and persist the security PIN of
a meet-me conference room into a
typed provisioned table.
See Default Audio Files for more
information about the defaults
prompt files.
Available since: 4.6

• Room
• PIN
• Source IP
• Path to WAV directory
• Provisioned Table API user
• Provisioned Table API user

password
• PINs Provisioned Table

See Onboard Conferencing.
Refuse call with audio prompt: Play an audio announcement and

decline an incoming call • filename of the announce-
ment relative to the global
config option “Prompts/
Base Directory”

• As Early Media
• Loop
• SIP Reply and HF

See Playing Audio Announcements.
continues on next page

11.5. Media Processing 331

FRAFOS ABC SBC Handbook, Release 5.3

Table 3 – continued from previous page
Action Name Description Parameters
Play prompt on final response Play an audio announcement on re-

ceipt of a negative final response
from downstream

• SIP response codes to trig-
ger the announcement

• As Early Media
• New response code if “as

early media”
• Optional header fields
• announcement WAV file-

name OR . . .
• . . . characteristics of a gen-

erated ringtone

See Playing Audio Announcements.
Generate Ring-Back Tone Play an audio file or a dual-

frequency tone instead of default
ringing tone.

• on downstream 180: start
playing when a 180 re-
sponse arrives

• on Timer: start playing if a
number of seconds elapses
(turned off if zero)

• Generate Ringtone if turned
on, a dual-tone with spec-
ified frequencies and dura-
tions will be played; other-
wise a specified audio file
will be used.

• Loop: when audio file is
chosen this option chooses
whether to play it once or in
a loop

See Playing Audio Announcements.
Activate Music On Hold Use this action on a call to play an

audio file when a call participant
puts the call on hold. It is possible
to specify how to signal the onhold
status in SDP.

• music file name
• playback in loop
• Hold indication (sendonly,

sendrcv, preserve incoming,
inactive, rfc2543 0.0.0.0 IP

See Playing Audio Announcements.
continues on next page

11.5. Media Processing 332

FRAFOS ABC SBC Handbook, Release 5.3

Table 3 – continued from previous page
Action Name Description Parameters
Activate Inband DTMF Detection Use this action together with the

“Convert DTMF to RTP/AVT” or
similar actions to detect and con-
vert inband DTMF. Direction can
be used to set on which direc-
tion the detection will be enabled.
Mode can be used to i.e. not enable
the detection if telephone-event is
in the SDP.
Note that this action:

• Does not filter the inband
DTMF,

• will increase the CPU usage
on the RTP traffic process-
ing.

Available since: 4.6

• Direction
• Mode

DTMF Termination Same SSRC
(on leg)

Actions that result in DTMF termi-
nation /generation (i.e. transcod-
ing, Convert DTMF to AVT RTP)
would generate the DTMF RTP
(RFC4733/RFC2833) using a new
SSRC. Using this action changes it
to injecting DTMF RTP into ongo-
ing RTP stream.
Note that this has the drawback of
not being able to generate DTMF
RTP if no other RTP packets are
being relayed. This is because
we can not reliably estimate RTP
timestamp unless we see the live
RTP traffic.
Available since: 5.0

DTMF Termination Stable Dura-
tion Increments (on leg)

Actions that result in DTMF termi-
nation /generation (i.e. transcod-
ing, Convert DTMF to AVT RTP)
would generate the DTMF RTP
(RFC4733/RFC2833) using vari-
able increments in ‘duration’, ac-
cording to the wallclock during the
relay of the other RTP packets. Us-
ing this action changes it to incre-
ment the duration in fixed steps.
The step interval is determined us-
ing ptime attribute of the SDP,
calculated from timestamp incre-
ments of the RTP packets or de-
fault to 20ms, in that order.
Available since: 5.2

11.5. Media Processing 333

FRAFOS ABC SBC Handbook, Release 5.3

11.6 SIP Dropping

Action Name Description Parameters
Reply to request Send a negative response to a SIP

request • Code
• Reason phrase
• optional header field

See Manual SIP Traffic Blocking.
Drop request Drop request silently

• Event throttling key

See Manual SIP Traffic Blocking.
Allow unsolicited NOTIFYs Allow forwarding NOTIFY re-

quests without a prior subscription
(either implicit with REFER, or
explicit with SUBSCRIBE).

• none

See Other mediation actions.

11.7 Scripting

Action Name Description Parameters
Set Call Variable Stores a computing result in an

variable. The variable can be
tested using the Call Variable con-
dition and/ or referred to from ac-
tions using the $V(gui.varname)
replacement.

• variable name
• variable value

See Binding Rules together with Call Variables.

11.6. SIP Dropping 334

FRAFOS ABC SBC Handbook, Release 5.3

11.8 Register Processing

Action Name Description Parameters
Enable REGISTER caching Stores a cached copy of REGIS-

TER contacts before forwarding.
• none

See Registration Handling Configuration Options.
Retarget R-URI from cache Rewrites AoR in request URI

with contacts cached using Enable
REGISTER caching

• enable NAT handling
• enable sticky transport

See Registration Handling Configuration Options.
REGISTER throttling Force UAs to refresh registrations

within a time window. Particu-
larly useful to trigger REGISTER-
based keep-alives to facilitate NAT
traversal.

• minimum registrar expira-
tion

• maximum UA expiration

See Registration Handling Configuration Options.
Save REGISTER contact Act as local registrar and store reg-

isters locally.
• none

See Registration Handling Configuration Options.
Restore contract from registrar Restore contact from registrar • none

See Registration Handling Configuration Options.

11.9 External Interaction

Action Name Description Parameters
ENUM query make an ENUM dip. The queried

value may contain replacement ex-
pression, suffix is appended to the
query.

• queried value
• domain suffix
• ENUM services

See ENUM Queries.
Read call variables over REST Do REST query to given URL and

set call variables received in reply.
Since ABC SBC 5.3 if content-
type is application/json then a json
content is parsed.
Please note, neither arrays nor
nested objects are supported. Only
simple objects similar to the one in
example are supported:

{
"attribute_name":

→˓"value",
"foo": "bar"

}

• REST URI

See RESTful Interface.
Read call variables from table Read variables from a provisioned

table • table name
• query key

See Provisioned Tables.

11.8. Register Processing 335

FRAFOS ABC SBC Handbook, Release 5.3

11.10 NAT Handling

Action Name Description Parameters
Enable dialog NAT handling. Remember during dialog lifetime

where the initial dialog-initiating
request came from and sends all
subsequent SIP traffic there.

• none

See NAT Traversal.

11.11 Other

Action Name Description Parameters
Support serial forking proxy Permit to reset early media upon

181-indicated serial forking
• none

See Early Media, Ring Back Tone and Forking.
Fork Fork a new parallel branch to a

URI • SIP URI

See Early Media, Ring Back Tone and Forking.

11.12 Default Audio Files

Most of the prompts’ sample rate is 8000. It isn’t necessarily required, as sems resample them. Note that
wideband samples may sounds nicer.

All of the meet-me actions’ offer two sets of defaults audio prompts:

• /usr/lib/sems/audio/webconference (English)

• /usr/lib/sems/audio/webconference/de (German)

Multi-lingual support can be used in conjuncture with those 2 directories. See Multi lingual conferencing an-
nouncements for more information about that feature.

11.12.1 Join meet-me conference

The following prompts are used by multiple meet-me conference configuration.

Audio file Content
General audios
contact_support Please contact support.
enter_pin Please enter your code, then press the pound

key.
entering_conference You are now entering your conference room.
first_participant ton Welcome, you are the first participant in the

conference.
max_attempt_reached We are sorry you are having problems. Please

try later or contact customer support.
please_enter_room Please enter your conference room, then press

the pound key.
please_enter_your_code Please enter your code, then press the pound

key.
continues on next page

11.10. NAT Handling 336

FRAFOS ABC SBC Handbook, Release 5.3

Table 4 – continued from previous page
Audio file Content
short_pin This PIN is too short. Please try again.
simple_pin This PIN is too simple. Please try again.
room_created Room created.
timeout_enter_pin This input unfortunately took to long. Please

try again later.
yourcodeis Your code is
yourroomnumberis Your room number is
welcome Welcome. This is FRAFOS conference.
wrong_pin This code is not correct. Please try again.
wrong_pin_bye This code is not correct. Please try again later

or contact customer support.
x_welcome_and_prompt Welcome this is FRAFOS’ conference. Please

enter your code, then press the pound key.
join_sound / drop_sound biip / buup
Security PIN audios
andpinis And the PIN is
create_secu_pin Please enter a PIN for the new room, followed

by the pound key.
enter_secu_pin Please enter the PIN of the room, followed by

then pound key.
repeat_secu_pin Please repeat the new PIN, followed by the

pound key.
secu_pin_set_to PIN set to
secu_pin_3_digits Sorry, security PIN must be at least 3 digits.
Record username audios
current_participants_are

The current participants in the conference
are. . .

just_joined_conf . . . just joined the conference
just_leaved_conf . . . just leaved the conference
recording_1_2_3 To keep this recording, please press 1, To replay

the recording, please press 2. To record your
name again, please press 3.

say_ur_name Please, say your name after the tone. Then,
press the pound key.

timeout_record Username recording timed out. Please try again
later.

ur_name_is Your recorded name is
Generate room audios
ask_if_gen To enter a conference room, please press 1. To

create a new room, please press 2
error_persist_room An error occurred while saving the new room

and PIN.
generating_room We are now creating a conference room
repeat_or_enter Press 1 to hear room number an pin again. Press

2 to go into your room.
timeout_generate_room This input unfortunately took to long. Please

try again later.
Multi lingual support audios
select_lang To continue in English, press one. Um auf

Deutsch vor zu fahren, drücken Sie bitten bis
zwei

Please note that digits prompts are also needed. When multi-lingual isn’t used, files are expected to be found in

11.12. Default Audio Files 337

FRAFOS ABC SBC Handbook, Release 5.3

the same directory as the matching Conferencing’ global config. In case of multi-lingual, files are expected to be
found in the digits/ sub-directory.

SBC support two kind of number echoing: - left to right: Fourty two - right to left: Zwei Und Vierzig

LtR expected files are the following: - digits: 0.wav, 1.wav, 2.wav, 3.wav, 4.wav, 5.wav, 6.wav, 7.wav, 8.wav,
9.wav - multiple of 10: 10.wav, 20.wav, 30.wav, 40.wav, 50.wav, 60.wav, 70.wav, 80.wav, 90.wav - tens: 11.wav,
12.wav, 13.wav, 14.wav, 15.wav, 16.wav, 17.wav, 18.wav, 19.wav - 21 to 99: x2.wav, x3.wav, x4.wav, x5.wav,
x6.wav, x7.wav, x8.wav x9.wav

RtL expected files are the following: - digits: 0.wav, 1.wav, 2.wav, 3.wav, 4.wav, 5.wav, 6.wav, 7.wav, 8.wav,
9.wav - multiple of 10: 10.wav, 20.wav, 30.wav, 40.wav, 50.wav, 60.wav, 70.wav, 80.wav, 90.wav - tens: 11.wav,
12.wav, 13.wav, 14.wav, 15.wav, 16.wav, 17.wav, 18.wav, 19.wav - 21 to 99: 2x.wav, 3x.wav, 4x.wav, 5x.wav,
6x.wav, 7x.wav, 8x.wav 9x.wav

11.12.2 Meet-me set PIN audio prompts

Table 5: Audio prompts
Audio file Context Content
setPin_welcome Use for welcome ‘welcome, you can set a pin for your personal confer-

ence room with the number’ . . .
setPin_welcome_set Used to welcome when

the security PIN is al-
ready set.

‘welcome, your personal conference room with the
number’ . . .

setPin_enter_pin Used to prompt the secu-
rity PIN

‘please enter the security pin of the room number’ . . .

setPin_change_pin Used to prompt the secu-
rity PIN

‘please hang up if you want to keep it, otherwise’

setPin_repeat_pin Used to confirm the secu-
rity PIN user

‘please repeat the pin and and press the pound key’

setPin_pin_set Used in case of success ‘your pin was successfully set, thanks you.’
setPin_pin_dont _match Used when user PIN

don’t match
‘the pin numbers you’ve enter does not match. Please
try again, and enter a new PIN, followed by the pound
key.’

setPin_failed Used in case of failure ‘please hang up if you want to keep it, otherwise’

11.12.3 Two-Factor authentication

Table 6: Audio prompts
Audio file Context Content
2fa_greeting Use for welcome ‘Please enter the two factor authentication PIN number that was set

for this line
2fa_pin_correct Used in case of suc-

cess
‘that is correct, thanks you. Please hold the line to be connected’

2fa_failed Used to prompt the
security PIN

‘I’m sorry you’re having entering the pin number. Please hold the
line to be connected to the help desk.’

2fa_pin_wrong Used to prompt the
security PIN

‘sorry this is not correct. Please enter the 2 factor authentication pin
number that we set for this line.’

11.12. Default Audio Files 338

Chapter 12

Reference of Global Configuration
Parameters

This reference lists all global configuration parameters used in ABC SBC. Note that they have default values
which are designated to accommodate most use-cases and can have massive impact on operation if changed:
modify them only after careful consideration. The GUI screen is showing recommended default values. When the
actual value is changed, the default value is highlighted as bold text.

Important: When the global configuration parameters are updated, a warning message with a link to activate the
new SBC configuration is shown in the GUI. No changes are applied until the “activate” link is used.

When the configuration changes are applied, appropriate services might be restarted (e.g. SIP and RTP processes)
depending on what parameters were changed. Note that this may cause service disruption.

The configuration parameters are grouped as follows:

• AWS Parameters

• Backup Parameters

• CDR Parameters

• Event Parameters

• Eventbeat Parameters

• Firewall Parameters

• LDAP Parameters

• Lawful Interception Parameters

• Login

• Low-level Parameters

• Miscellaneous Parameters

• Meet-Me web conference Parameters

• System Monitoring Parameters

• PCAP Parameters

• SEMS Parameters

• SIPREC Parameters

• SIP Parameters

• SRTP Parameters

339

FRAFOS ABC SBC Handbook, Release 5.3

• Syslog Parameters

• Signaling SSL

• RTP handling Parameters

12.1 AWS Parameters

These parameters are used when ABC SBC is deployed on Amazon AWS.

At this moment they are used for performing initial AWS config when using HA under AWS.

Note that anyone in possession of an AWS IAM User Access key may impersonate the key’s owner. It therefore
makes sense to create a user with limited permissions and access AWS from the ABC SBC under this user’s
identity. Read the following link to learn more about IAM user identities: https://docs.aws.amazon.com/IAM/
latest/UserGuide/id_credentials_access-keys.html

Table 1: AWS Parameters
Param-
eter
Name

Description

Region
for AWS
requests

AWS Region.
Available since: 4.3

AWS
access
KEY ID

Key ID of an AWS user who was permission for the AWS service
Available since: 4.3

AWS
secret
access
KEY

The secret associated with the AWS user’s key id. Note that the secret is only revealed when
they key is created. When forgotten, the key must be created newly. When leaked, anyone in
possession of the key may impersonate the user.
Available since: 4.3

12.2 Backup Parameters

These parameters set ABC SBC daily backups. See also more in Backup and Restore Operations.

Table 2: Backup Parameters
Parameter Name Description
Equivalent settings
as for CCM

If enabled, the settings on this Backup tab will not be applied on Sbc nodes, but the same
settings as configured for CCM node (under CCM / CCM Config / Backup page) will be
applied to Sbc nodes instead.

Create daily Sbc
configuration
backups

If enabled, daily snapshot of ABC SBC configuration will be created into backup gzipped
tarball file.

Include provi-
sioned tables in
daily backups

If enabled, the daily backup will include also content of whole provisioned tables.

Number of days to
keep backups

Sets the retention period for backup files. All files named sbc-backup-* in the backup
directory older than specified number of days will be deleted on every daily backup run.
Use 0 to disable automatic deletion of old backup files.

Destination direc-
tory for backups

Specifies the destination directory for the daily backup files. Default is “/data/backups”
directory.

Full path to extra
files or dirs to in-
clude in backup

Extra custom files or directories to be included in backup, using full paths, more fields
separated by comma. A * wildcard can be used. The path must not contain comma
character.

12.1. AWS Parameters 340

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

FRAFOS ABC SBC Handbook, Release 5.3

12.3 CDR Parameters

These parameters allow to define how and where CDRs are stored. See also more in Call Data Records (CDRs).

Table 3: CDR Parameters
Parameter Name Description
Enable CDRs Enable writting CDRs.
Number of CDR files to
keep

CDR Retention policy. The ABC SBC produces CDRs for all completed calls in
CSV form. Sets number of CDR files to keep.

Directory for exported
CDR files:

Directory in filesystem where the CSV CDRs are stored.

CDR files rotation fre-
quency (daily,weekly,
monthly)

Sets the frequency of CDR files rotation. Use “daily”, “weekly” or “monthly”. The
number of rotated files to keep before deletion is set using the “Number of CDR
files to keep”

Enable new version of
CDRs (CDR-NG)

Enables new version of CDRs, called CDR-NG. This feature is in experimental
state in ABC SBC 4.5 release.

12.4 Event Parameters

These parameters allow to define how and where events are stored. See also more in Events (optional).

Table 4: Event Parameters
Parameter Name Description
Number of days to keep old traffic log files Local retention policy. Particularly useful when no

ABC Monitor is attached to the ABC SBC. Must be
shorter than the retention policy at ABC Monitor –
otherwise the ABC SBC may keep copying files that
already expired at ABC Monitor. See Section ABC
Monitor Initial Configuration

ABC Monitor address IP address or DNS name of ABC Monitor.
Empty if no ABC Monitor is attached to the ABC
SBC.

Secondary ABC Monitor address IP address or DNS name of secondary ABC Monitor.
Empty if no secondary ABC Monitor is attached to
the ABC SBC.

Replicate traffic logs to ABC Monitor Allows to push collected PCAPs (see Section Di-
agnostics Dashboard) to a Monitor server using the
rsync protocol. The files are deleted from Sbc after
transfer.

Replicate traffic logs to secondary ABC Monitor Allows to push collected PCAPs (see Section Di-
agnostics Dashboard) to a Monitor server using the
rsync protocol. The files are deleted from Sbc after
transfer.

Replicate recordings to ABC Monitor Allows to push recorded audio files (see Section Au-
dio Recording) to a Monitor server using the rsync
protocol. The files are deleted from Sbc after transfer.

Replicate recordings to secondary ABC Monitor Allows to push recorded audio files (see Section Au-
dio Recording) to a Monitor server using the rsync
protocol. The files are deleted from Sbc after transfer.

Replication rsync password rsync password to be used for replicating traffic logs
and recorded audio.

Replication rsync password for secondary ABC Mon-
itor

rsync password to be used for replicating traffic logs
and recorded audio.

continues on next page

12.3. CDR Parameters 341

FRAFOS ABC SBC Handbook, Release 5.3

Table 4 – continued from previous page
Use secure TLS connection to ABC Monitor If enabled, events, traffic log and recording files will

be pushed to ABC Monitor over TLS secured con-
nection. It is highly recommended to install trusted
certificate for this on ABC Monitor end instead of de-
fault self-signed. On Sbc side, the TLS profile of IMI
interface is used.

Number of hours to keep old recordings (0 to not
delete)

Retention policy for recored WAV files.

Generate an event if a SIP transaction reaches the de-
fined number of retransmissions

Allows to monitor failing incoming transactions and
detect SIP UACs with connectivity issues. The events
are of type “notice” and appear in ABC Monitor’s
Transport Dashboard. Use with care, a too low num-
ber will result in dramatic increase of events. If used,
recommended value is 4.

Maximum number of events buffered in local Redis Retention policy for locally buffered events
List of call variables added into events Contain list of call variables that are added into call

events. See Call Processing Events.
The list shall contain comma separated pairs:
<var_name>:<flag> where <var_name> is name of
call variable and <flag> is 0 or 1 specifying whether
the value of call variable can be overwritten. User
may use the wildcard (*) character to denote ALL
events.

Generate an event on UDP receive buffer errors If enabled, alert event will be generated if UDP re-
ceive buffer errors are detected on system network in-
terface.

Generate an event on UDP send buffer errors If enabled, alert event will be generated if UDP send
buffer errors are detected on system network inter-
face.

Generate an event on UDP packet receive errors If enabled, alert event will be generated if UDP packet
receive errors are detected on system network inter-
face.

Generate an event on IP incoming packet receive er-
rors

If enabled, alert event will be generated if IP incoming
packet receive errors are detected on system network
interface.

Generate an event on outgoing packets dropped errors If enabled, alert event will be generated if outgoing
packets dropped errors are detected on system net-
work interface.

Alarm when number of calls reaches % of the license. sems will yield a warning message once the number
of session reached X% of the license limit. A down-
stream message is also yield (info level), once the
number of session go below X%.
Default: 75.

Privacy monitor mode sems will not send call-attempt, call-start and call-end
events to monitor. Can be overridden via “Disable
privacy monitor mode” action.
Default: off

Destination monitor event interval (sec) Interval at which destination monitor events are gen-
erated. Value is in seconds.
Default: 300 (5min)

Threshold of number of events buffered on Sbc to set
warning

If there are more events waiting in redis queue on Sbc
side than the limit set here, the node status will be set
to warning on System monitoring page.
Default: 500

continues on next page

12.4. Event Parameters 342

FRAFOS ABC SBC Handbook, Release 5.3

Table 4 – continued from previous page
Enable events redis disk persistence Enables events redis disk persistence, using

/data/redis directory. Use with caution, there
has to be enough disk space.

12.5 Eventbeat Parameters

These parameters allow to tweaks and debug the event communications between an ABC SBC node and an ABC
Monitor one. Some statistics may be generated and exposed on the application interface TCP port (:4247 and
:4248).

Table 5: Eventbeat Parameters
Parameter Name Description
Event batching size Maximum number of event sent at once to the moni-

tor.
Enable enventbeat statistic reporting Expose on the TCP port (:4247 for sbc-eventbeat-1

and :4248 for sbc-eventbeat-2 some live metrics about
events processing.

Interval between each statistic Interval on which a single statistic entity was
recorded.

How many statistic entries per payload How many statistics entities should be returned in a
single payload.
Ex: To have statistic about the last minutes, per pack-
ets of 5 seconds, set the following :

• Interval between each stat to 5
• set How many entries per payload to 12

12.6 Firewall Parameters

Table 6: Firewall Parameters
Parameter Name Description
Enable Sbc firewall If enabled, the iptables firewall chains will be filled

with Sbc firewall rules. If deployed on container or
system not supporting iptables or ipsets, this option
has to be disabled, otherwise a Sbc node error will be
reported in System status.
Available since: 5.0

Drop UDP signaling packets not looking like SIP If enabled, any UDP packets not bearing a “SIP sig-
nature” in first 200 bytes will be discarded without
further notice.
Available since: 4.3

continues on next page

12.5. Eventbeat Parameters 343

FRAFOS ABC SBC Handbook, Release 5.3

Table 6 – continued from previous page
Blacklist IP addr for repeated signaling failures If enabled, IP address of request that failed authentica-

tion, exceeded limit, failed sanity check, was dropped
by Drop action or Log message / Event for replies ac-
tion was used, will be put on blacklist, silently drop-
ping all packets from it.
Note that the individual reasons for blacklisting have
to be also enabled in CA settings or in the Drop or Log
message / Event for replies actions parameter. See
Section Automatic IP Address Blocking for more de-
tails.
Available since: 4.3

Signaling failures blacklist: IP address start score be-
fore any offense

Sets the score used as a starting value before any of-
fense has been registered. This start value will be de-
creased each time until it reaches 0 or less, which fi-
nally leads to the blacklisting of the incriminated IP
address. See Section Automatic IP Address Blocking
for more details.
Available since: 4.3

Signaling failures blacklist: rate per second used to
calculate a time-related bonus between offenses

Sets the allowed rate of offenses in events per second.
This allows the score to recover slightly over time and
thus can be understood as a bonus for good behavior.
See Section Automatic IP Address Blocking for more
details.
Available since: 4.3

Signaling failures blacklist: time in seconds to remove
entries for which no event has occurred from score
calculation

Sets the number of seconds after which, if no offense
from a certain IP address has been seen, that IP ad-
dress is removed from the scoring table. Should a new
offense be registered from a deleted IP address, the
start score will be used. This allows for keeping the
scoring table at a reasonable size. See Section Auto-
matic IP Address Blocking for more details.
Available since: 4.3

Time in seconds to blacklist IP addr for signaling fail-
ures

Sets the time how long the IP address will be held on
blacklist, before removing it from blacklist automati-
cally (for drop, failed auth, limit, sanity). See Section
Automatic IP Address Blocking for more details.
Available since: 4.3

Greylist: time delay in seconds to give IP a chance to
prove validity

If the traffic from IP address proves validity during
this probation period, the source IP addr will be added
to whitelist. Note that the corresponding action op-
tions like “Greylist IP address” or “Log to greylist”
have to be used. See Section Automatic Proactive
Blocking: Greylisting for more details.
Available since: 4.3

Greylist: time period in seconds when IP can be
blacklisted if repeats and did not prove validity

If traffic from IP address did not prove validity dur-
ing the probation time period, and new packet comes
during this time period since first packet, the source
IP addr will be added to blacklist. Note that the
“Greylist” flag has to be enabled on ABC SBC sig-
naling interface for this to work. All traffic from
the IP addresses on blacklist will be silently dropped.
See Section Automatic Proactive Blocking: Greylist-
ing for more details.
Available since: 4.3

continues on next page

12.6. Firewall Parameters 344

FRAFOS ABC SBC Handbook, Release 5.3

Table 6 – continued from previous page
Greylist: time in seconds to keep IP on blacklist Sets how long to keep the IP address on blacklist. Af-

ter this time it is removed from blacklist and has a
chance to prove validity again. See Section Automatic
Proactive Blocking: Greylisting for more details.
Available since: 4.3

Greylist: time in seconds to keep IP on whitelist Sets how long to keep IP address on whitelist. Af-
ter this time it is removed from whitelist and has to
prove validity again. See Section Automatic Proac-
tive Blocking: Greylisting for more details.
Available since: 4.3

Greylist: additional ports or port ranges (a:b) to check
in addition to signaling ports, space separated

Sets additional ports to ports defined on ABC SBC
signaling interfaces. If used, traffic coming to this
port(s) will be also subject to the greylisting proce-
dure. You can specify single port(s) or port ranges (in
format lower:higher), space separated. See Section
Automatic Proactive Blocking: Greylisting for more
details.
Available since: 4.3

Blacklist: Log blacklisted IP addresses to syslog Log blacklisted IP addresses to syslog. Entries are
logged in the following file: ‘/var/log/frafos/sems-
blacklist.log’
Available since: 4.3

Greylist: Log greylisted IP addresses to syslog Log greylisted IP addresses to syslog Entries are
logged in the following file: ‘/var/log/frafos/sems-
greylist.log’
Available since: 4.3

Overall limit in packets per second from not approved
IP addresses

This option can be used to set overall packets per sec-
ond limit on all IP addresses, that did not prove va-
lidity using “Greylist IP address” or “Log to greylist”
action options. Use with caution. Use 0 to disable any
rate limiting.
Available since: 4.3

12.7 LDAP Parameters

ABC SBC allow authentication against an LDAP server. The authentication is done using the nslcd and pam
packages. Once configured, users may then access an ABC SBC container, via ssh, using their UID and password.

Table 7: LDAP Parameters
Parameter Name Description
LDAP auth enabled Enable LDAP authentication.
LDAP server address LDAP host on which the LDAP service can be

reached (ldap://IP:PORT or ldap://IP or ldap://my.
domain)

LDAP distinguished name / admin user DN Specifies the distinguished name used to bind to the
LDAP server for lookups.

LDAP credentials / admin user PW Specifies the LDAP credentials used to bind.
base DN such as ‘dc=example,dc=org’ Default search DN of the LDAP.

Ex: For “cn=admin,dc=example,dc=org”, base DN is
“dc=example,dc=org”

continues on next page

12.7. LDAP Parameters 345

ldap://IP:PORT
ldap://IP
ldap://my.domain
ldap://my.domain

FRAFOS ABC SBC Handbook, Release 5.3

Table 7 – continued from previous page
extra group such as ‘ou=People’ like in
“uid=john,ou=People ,dc=example,dc=org”

So user only need to register their name (aka “uid”)
please pass any extra bind dn via this parameters.
Ex: user (like john) exist in the form,
“uid=john,ou=People,dc=example,dc=org”, so
we set the following to “ou=People”. GUI
will then concatenate in the form uid=[user
value][extra_group][base_dn] to auth the user
against the ldap server.
Note that to complete a user login, the ldap user must
also be member of a group matching one of the GUI
groups supporting login. This group must be a pri-
mary group of that user.

Enable Active compatibility with Microsoft Active
Directory LDAP

Connect to an Active Directory LDAP server.

Enable Active compatibility with IBM LDAP Connect to an IBM LDAP server.
limitation: currently, CCM’ matching group can
only be done against a group name, instead of a
full group cn. example: group1 is valid, while
cn=group1,dc=frafos,dc=org will fail.

Check SSL/TLS peer certificate Enable the check of client certificates. Please note
that an Active Directory LDAP needs the certs to be
configured in`/etc/openldap/certs`

CA certificate for the LDAP List of certificates to which the client’s one are check.
The certificate must be in PEM format.

Example of an ldap configuration:

There is a docker container available on github that match the screenshot configuration : https://github.com/frafos/
docker-ldap.

The image come in with 2 users (+ admin) :

User dn pwd
john uid=john,ou=People, dc=example,dc=org johnldap
jane uid=jane,ou=People, dc=example,dc=org janeldap

On some setup, it may be requested to append the user name to the “List of sshd allowed users” parameter
(Miscellaneous Parameters).

You can then login with the credential john and the password johnldap:

$ grep 'AllowUsers' /etc/ssh/sshd_config
AllowUsers root john
$ ssh jane@127.0.0.1
jane@127.0.0.1's password: janeldap

(continues on next page)

12.7. LDAP Parameters 346

https://github.com/frafos/docker-ldap
https://github.com/frafos/docker-ldap

FRAFOS ABC SBC Handbook, Release 5.3

(continued from previous page)

Permission denied, please try again.
^C
$
$ ssh john@127.0.0.1
john@172.42.0.1's password: johnldap
Last login: Thu Jul 21 11:52:37 2022 from 192.168.1.21
john@yopyop:/home/jone/$

12.8 Lawful Interception Parameters

This is configuration of Lawful Interception.

Table 8: Lawful Interception Parameters
Parameter Name Description
Lawful Interception en-
abled

Enable the feature generally. Note that it has to be used also under corresponding
action to take effect.

Operator ID Set the Operator ID value.
Delivery Country Code
(DCC)

Set the Delivery Country Code (DCC) value.

12.9 Login

Parameters related to login/logout.

Table 9: Login Parameters
Parameter Name Description
Time for terminal session auto-
matic logout if idle, in seconds

Sets the time in seconds after which idle terminal session to ABC SBC will
be automatically closed. Default value is 600 sec. Use 0 to disable.

12.10 Low-level Parameters

These settings have effect only after reboot of the server. Additional information can be found in the Section
Hardware Specific Configurations.

Caution: changing these parameters may dramatically change system behavior. Their effect largely depends on
used equipment.

Table 10: Low-level Parameters
Parameter Name Description
Interfaces where to enable RPS Network interfaces on which a “receive packet steering” kernel feature

should be enabled, separated by spaces. While the kernel leaves this option
by default off, turning it on can increase media throughput.
Available since: 4.3

Interfaces where to set ethtool
options

Network interfaces where to apply the following coalesce and ringbuffer eth-
tool options. Separated by spaces.
Available since: 4.3

continues on next page

12.8. Lawful Interception Parameters 347

FRAFOS ABC SBC Handbook, Release 5.3

Table 10 – continued from previous page
Coalesce ethtool options Ethernet adapter coalescing options, syntax of ethtool. Applied on interfaces

listed in “Interfaces where to set ethtool options”. This option allows to
fine-tune a trade-off between less-CPU-intensive and more-real-time packet
processing in kernel. The tuning outcome is specific to used network card.
Available since: 4.3

Ringbuffer ethtool options Ethernet adapter rx/tx ring parameters, syntax of ethtool. Applied on in-
terfaces listed in “Interfaces where to set ethtool options”. Fine-tuning this
parameter is specific to used network card. Increasing buffer sizes allows to
deal with temporary packet bursts, while latency may increase.
Available since: 4.3

Interfaces where to bind irqs to
CPUs

Network interfaces on which the individual interrupts for receive and trans-
mit queues should be statically bound to individual CPUs / CPU cores.
This option may increase media throughput on network cards with multiple
queues.
Available since: 4.3

Run db check on boot If enabled, run “mysqlcheck” command during boot process. This option
allows a safe recovery from an unexpected shutdown and is therefore by
default turned on. The check may slowdown machine startup.

Clean tmp files on boot If enabled, clean-up system directory for temporary files.
Sems memory limit in % from
total memory

Limit Sems process memory maximum usage. Set to 0 for no limit.

Provisioned tables redis disk
persistence time interval (in
seconds)

Sets the time interval after which provisioned tables data on Sbc slave node
will be saved from in-memory redis database to disk to allow persistence for
reboot. May be tuned according to provisioned tables data size. The data is
saved if there were more record changes than set via the following setting for
minimum number of records. Default is 600 seconds.

Provisioned tables redis disk
persistence number of records
to trigger save

Set minimum number of provisioned tables record changes that trigger save
to disk. The data will be saved when both the number of changed records
and the time interval conditions are met. Default is 1 record.

Use real-time priority on pro-
visioned tables redis

If enabled, real-time process priority will be used on provisioned tables re-
dis db, which helps performance. Can be used only if operating system or
container permissions support this. For podman installations please make
sure the “–cap-add=CAP_SYS_NICE” is used if redis real-time priority is
required.

Session processor threads These threads process the SIP signaling of the sessions. They also process
the B (routing) and C (outbound) rules of the ABC rule set. created in a
thread pool among which all SIP sessions are distributed. Usually we rec-
ommend to set this to the number of usable hardware threads on the CPU
multiplied by two, but to no less than 8 threads. If the SBC needs to process
a lot of external data in the routing or C rules, e.g. needs to query provisioned
tables or external API server via REST, then it is recommended to set this to
a high number.

Media processor threads These threads process RTP media for transcoding and media applications
like conferencing and announcements. In normal SBC operation, when those
functionalities are not used, these threads will be idle. Like the session pro-
cessor threads, the number configured here sets the number of threads created
in a thread pool among which all media sessions are distributed. If transcod-
ing or media applications are used, it is recommended to set this number to
two times the usable CPU hardware threads, otherwise it is recommended to
leave them to the default (16) or even less.

continues on next page

12.10. Low-level Parameters 348

FRAFOS ABC SBC Handbook, Release 5.3

Table 10 – continued from previous page
SIP server threads These threads receive SIP messages from the network and initially parse

them for later processing by the Session processor threads, immediately reply
e.g. if the reply is given by the SIP dialog state (e.g. errors). They also
process the A rules of the ABC rule sets. The number of threads configured
here is started for every signaling interface (SI), and one set for udp and one
for TCP; so e.g. if five SI interfaces are configured, and this is set to 4, then
5*4*2=40 threads are started. The recommended number depends on the
number of signaling interfaces; e.g. on a setup with two signaling interfaces,
the recommended number would be equal to the number of CPU cores (e.g.
8, 16 or 32). On a setup with many signaling interfaces, this should be set to
e.g. 2 or 4.

RTP receiver threads These threads receive RTP packets and relay them. They also decrypt SRTP
packets if enabled. As with the thread pools above, this number is a global
number of threads for a thread pool. The recommended number to set this to
is two to four times the usable CPU hardware threads.

Call restore threads (HA) This is a thread pool that is only used when doing the call restore after
failover. It is recommended to set it to the number of usable CPU hardware
threads.

Out-of-dialog requests threads These threads handle REGISTER, SUBSCRIBE/NOTIFY and MESSAGE
requests. If a lot of registrations are handled, or a lot of subscriptions, then it
is recommended to set this to a higher number.

12.11 Miscellaneous Parameters

Table 11: Miscellaneous Parameters
Parameter Name Description
Permit root login using ssh Sets if root is allowed to login to ABC SBC server using ssh. Use ‘yes’

to allow root login, or ‘prohibit-password’ to allow login but password and
keyboard-interactive authentication disabled, or ‘no’ to disable.

List of sshd allowed users List of users allowed to login via ssh, if the ssh app is enabled on Sbc in-
terface. Use space to separate more entries. Use empty value to allow all
users.

Enable ssh password authenti-
cation

Enables or disables PasswordAuthentication option in sshd config. Default
is enabled.

Blacklist timeout for IP ad-
dresses from external sources

Timeout in seconds for the IP addresses blacklisted by RESTFul requests.

Enable sending important sys-
log entries to ABC monitor

Enables or disables sending syslog entries of levels ‘critical’ up to ‘emer-
gency’ as an alert to the ABC monitor.

Automatically add new nodes If enabled, records for new nodes that pull config from configuration master
will be automatically added. If disabled, the configuration master will refuse
to provide configuration to nodes that are not already defined in Nodes con-
figuration.

Session Management enable Enables advanced load-balancing, see more details in the section :ref:Sec-
adv-load-balancing

Failed system login lock un-
lock time

Time in seconds to keep system accounts locked after 3 failed login attempts.
Default value is 600 seconds.

Geoip - license file for
geoipupdate command

Used to pass license file for geoipupdate command, which is run periodically
if the license is provided to retrieve geoip GeoLite 2 database. The license
has to be created by user using his MaxMind account. When creating the
license, select version usable with geoipupdate version 2.5.

12.11. Miscellaneous Parameters 349

FRAFOS ABC SBC Handbook, Release 5.3

12.12 Meet-Me web conference Parameters

Table 12: Meet-me conf Parameters
Parameter Name Description
Keep participant’s name file
for (hours)

Settings defining for how long files holding webconference participant’s
name will be kept on the FS (not subject to replications).

Echo the number of participant
on event

If enable, the number of participant is echo’ed when a participant join or
leave the conference room. Alternatively, one may press the star (*) key
while in call to achieve the same.

Use room security pin value
for the admin pin

If the ‘Use security pin’ and ‘Use admin pin’ options are enabled for a room,
then the ‘admin pin’ value is set to the same as the ‘security pin’.

Path to directory holding digits
wav files

The files are used to echo numbers. File expected hold values like ‘one’,
‘twenty’, ‘(seven-)teen’ etc . . . By default the SBC ships 2 flavors of that di-
rectory: /usr/lib/sems/audio/webconference/digits/ for English prompt, and
/usr/lib/sems/audio/webconference/de/digits/ for Germans one.

List of provtables table to
watch for expired generated
room

Generated webconference name and PIN are persisted to the CCM provta-
bles. The CCM’s configured to attempt to remove expired room from the
following listed provtable every day at 2am.

Generated rooms validity
(days)

Number of days generated conference room are considered as ‘open’. Once
a room’s closed, it’s PIN’s blocked for a fixed amount of time.

Keep expired generated rooms
(days)

Number of days before closed generated conference room’s PIN are un-
blocked.

12.13 System Monitoring Parameters

These parameters allow to set up an email alarm if system resources are used excessively.

Not that this same email is used to setup the Let’s encrypt auto certification.

12.13. System Monitoring Parameters 350

FRAFOS ABC SBC Handbook, Release 5.3

Table 13: System Monitoring Parameters
Parameter Name Description
email for sending alerts Email address to which important alerts like reports

on excessive CPU usage are sent. Use empty value to
disable sending the email alerts. This email address
will be also used in case of let’s encrypt auto certifi-
cate renew on TLS profile.
Available since: 4.3

mailserver for sending alerts Specifies address of SMTP server used as email relay.
Note: when ABC SBC is running in container, mail
relay on localhost is not available and external mail
server has to be used.
Available since: 4.3

SMTP mail server port Set the SMTP mail server port.
Available since: 5.1

Use secure connection to SMTP mailserver Set if the SMTP connection to mailserver should be
encrypted, and if yes if using TLS or STARTTLS.
Available since: 5.1

SMTP mail server authentication
Use ‘off’ to disable the authentication, or ‘on’ to enable

it and choose auth type automatically.
Available since: 5.1

Username for SMTP authentication Set the username for SMTP authentication, if authen-
tication is enabled.
Available since: 5.1

Password for SMTP authentication Set the password for SMTP authentication, if authen-
tication is enabled.
Available since: 5.1

from address for sending alerts email address used for From in email alerts, system
default is used if empty
Available since: 4.3

1min load threshold CPU load threshold which if exceeded for one minute
will raise an alarm. The load threshold values should
be set correspondingly to system CPU cores number.
Available since: 4.3

5min load threshold CPU load threshold which if exceeded for five min-
utes will raise an alarm (typically lower value than
previous). The load threshold values should be set
correspondingly to system CPU cores number.
Available since: 4.3

cpu wait % threshold threshold for % of CPU time in wait status to raise an
alarm
Available since: 4.3

memory usage % threshold threshold of memory occupation in % which if ex-
ceeded will raise an alarm
Available since: 4.3

disk usage % threshold threshold of disk usage in % which if exceeded will
raise an an alarm
Available since: 4.3

send system monitoring data to ABC Monitor if remote ABC monitor is used, send system monitor-
ing data to it together with signaling events
Available since: 4.3

send extended system info emails when over treshold if enabled, email with more detailed system informa-
tion will be sent when some monitoring threshold is
reached
Available since: 4.3

extended info emails frequency limit frequency of sending the extended info emails,
use value with min, hour or day suffix
Available since: 4.3

Check status of system interfaces If enabled, system network interfaces will be period-
ically checked and alert events created if errors are
detected. Individual check types can be set using fol-
lowing options.
Available since: 4.3

Include only MI/SI interfaces in status check Sets if the system network interfaces check includes
only media and signaling interfaces, or all.
Available since: 4.3

Interval for the system interfaces checks Sets the frequency of the system network interfaces
checks, in seconds. Default value is 300 sec.
Available since: 4.3

12.13. System Monitoring Parameters 351

FRAFOS ABC SBC Handbook, Release 5.3

12.14 System Monitoring LDAP access Parameters

The ABC Monitor may use an LDAP server to authenticate user. To configure it, access ABC Monitor GUI
Settings / General page and set the LDAP settings under “Authentication” section.

12.15 PCAP Parameters

These parameters allow to set up how the most recent SIP traffic is recorded on the system for sake of troubleshoot-
ing. The ABC SBC stores the SIP traffic in PCAP files of given size and deletes the least recent files. The PCAP
files can be inspected in the administrative interface as shown in Section User Recent Traffic.

Table 14: PCAP Parameters
Parameter Name Description
File size in MB for one pcap file maximum size of a PCAP file after which a new file is created
Number of pcap files to keep PCAP retention policy. PCAP files are rotated and only the configured

number of PCAP files is kept. The least recent files are deleted. Use 0
to disable storing SIP traffic completely, which is not recommended be-
cause of troubleshooting. Note: the pcap filenames are using extension
“.pcapXX” where XX corresponds to the file number. If the number of
files is modified, all existing traffic.pcap* files are deleted once the config-
uration change is activated.

12.16 SEMS Parameters

These parameters determine the behavior of the ABC-SBC “engine”, the SEMS signaling and media processor.
The parameters are used primarily for troubleshooting and performance tuning and shall be therefore changed
only when there is a good reason for doing so.

Table 15: SEMS Parameters
Parameter Name Description
Use raw sockets Performance optimization techniques for sending

RTP packets on Linux systems with slow UDP stack.
Default Destination Blacklist TTL Defines how long are unavailable IP destinations

maintained on a blacklist to which no SIP traffic is
sent by default. For Call Agent, a specific value
may be entered in the Call Agent parameters. See IP
Blacklisting: Adaptive Availability Management.

Persistent redis storage If enabled, the calls state data that is stored in redis
db, will be preserved during server reboot.

Load q850_reason call control module If enabled, the module for processing Q.850 reasons
will be loaded. The cc_q850_reason.conf is empty
by default and it can be used only if custom local
template for this config file is provided (/data/local-
templates/sems/cc_q850_reason.conf.tmpl.local).

continues on next page

12.14. System Monitoring LDAP access Parameters 352

FRAFOS ABC SBC Handbook, Release 5.3

Table 15 – continued from previous page
Mariadb timeout for “Read call variables” queries Timeout (in seconds) of Mariadb queries done when

reading call variables using the action or condition
“Read call variables”.
The main purpose of this parameter is to reduce prob-
lems caused by queries that may take too much time
and block processing of other calls.
Please note that timeout of such Mariadb queries
means that system is either overloaded or blocked and
the root cause should be fixed instead of tuning the
timeout value.
Negative value or 0 means that default timeout of the
MySQL++ library will be used.
Default value: 5

Websocket ping-pong interval in seconds Interval in seconds to send keepalive ping-pong mes-
sages on Websocket signaling interfaces. Use 0 to dis-
able.

Soft limit for out-of-dialog transactions Number of active server transactions that, if passed,
will trigger an alert event. This limit will only be
taken into consideration when creating a server trans-
action which is not related in any way to an existing
dialog.
Use 0 to disable that feature.
See section Server Transaction limits for more details.

Hard limit for out-of-dialog transactions Limit for the number of active server transactions,
which will be enforced when creating a new server
transaction not related to an existing dialog. The limit
is enforced by replying to new requests with “503
Overloaded”. Additionally, a corresponding monitor-
ing event will be created.
Use 0 to disable that feature.
See section Server Transaction limits for more details.

Event throttling for soft/hard OOD limit Throttle the events generated by the hard & soft limit
for out-of-dialog transactions to no more than one of
each type (soft / hard) per configured time lapse in
seconds.
Use 0 to disable that feature.
See section Server Transaction limits for more details.

Soft limit for in-dialog transactions Number of active server transactions that, if passed,
will trigger an alert event. This limit will only be
taken into consideration when creating a server trans-
action related to an existing dialog.
Use 0 to disable that feature.
See section Server Transaction limits for more details.

Hard limit for in-dialog transactions Limit for the number of active server transactions,
which will be enforced when creating a new server
transaction related to an existing dialog. The limit is
enforced by replying to new requests with “503 Over-
loaded”. Additionally, a corresponding monitoring
event will be created.
Use 0 to disable that feature.
See section Server Transaction limits for more details.

Event throttling for soft/hard DLG limit Throttle the events generated by the hard & soft limit
for in-dialog transactions to no more than one of each
type (soft / hard) per configured time lapse in seconds.
Use 0 to disable that feature.
See section Server Transaction limits for more details.

continues on next page

12.16. SEMS Parameters 353

FRAFOS ABC SBC Handbook, Release 5.3

Table 15 – continued from previous page
Loop detection secret This parameter is used to create a special branch tag.

When we receive a new request that contains our pre-
pared tag in the first Via-HF, we refuse the request
with 482 Loop detected. Use empty value to disable,
“auto” for automatic secret string, or provide a string.
Default is “auto”.

Strict checking of the user part of a URI to only allow
chars as per RFC3261

When the strict checking is enabled, the user part of
a URI is only allowed to contain the chars as per
RFC3261 (see ABNF rules). When disabled, ABC
SBC does everything to let the most through, as long
as it does not prevent it from parsing URIs correctly.
Enabled by default.

TCP connection idle timeout in milliseconds Sets TCP connection timeout if idle, on signaling in-
terfaces. Use value in milliseconds, or 0 to disable.

Delay after startup to ignore limits Delay in seconds to ignore CAPS and other limits af-
ter start of ABC SBC signaling application.

RESTful interface - verify https peer If enabled, the validity of https certificate of peer will
be verified on RESTful interface queries. Enabled by
default.

REST Custom CA file If provided, SEMS’s rest module will use the provided
custom CA for every outgoing https request.
ABC SBC will handle on it own the adding of the ca
to the nodes trusted chain. Process:

• CA copied to /etc/pki/ca-trust/source/anchors/
• run update-ca-trust

User-agent string If provided, the input here is used to set the User-
Agent on SIP messages.

TCP send timeout for signaling interfaces Set TCP connection timeout in milliseconds for
signaling interfaces (see TCP_USER_TIMEOUT in
tcp(7) man page).

Unprocessed events limit If the REDIS server is offline, DB writes are queued
internally. If REDIS is offline for a long time, the in-
ternal write queue can grow, using up a lot of memory.
This parameter limits the write queue size; if the write
queue has reached this size, further writes are ignored.
Set to 0 to disable the limit.

Unprocessed events limit warning threshold If the write queue grows over this threshold, SEMS
warns by generating WARN level syslog messages.
Set to 0 to disable.

Log every monitored destination state Every state of a monitored destination (changed or
not) will generate a log message on the INFO level.

Terminate calls on sems shutdown or restart If enabled, sems process will try to terminate calls on
the process shutdown or restart.

DNS Resolver Timeout Timeout in milliseconds before giving up waiting for
a response to a DNS query. Default is 100.

DNS Cache Renew Period Duration in seconds. It is used to early-refresh the
entry in the cache if it would be expired after this du-
ration.

DNS Cache Grace Period Duration in seconds to wait before discarding an item
from the cache after it’s expired.

12.16. SEMS Parameters 354

FRAFOS ABC SBC Handbook, Release 5.3

12.17 SIPREC Parameters

Table 16: SIPREC Parameters
Parameter Name Description
SIPREC outbound interface Use Sbc interface name to force outbound interface for SIP recording. Leave

empty by default.
SIPREC media interface Sbc interface to be used for sending media towards SIPREC server. Empty by

default.
SIPREC SIP timer A (ms) SIP timer A used towards SIPREC server. Default value 500ms.
SIPREC SIP timer B (ms) SIP timer B used towards SIPREC server. Default value 32s.
SIPREC SIP timer C (ms) SIP timer C used towards SIPREC server. Default value 180s.
SIPREC SIP timer F (ms) SIP timer F used towards SIPREC server. Default value 32s.
SIPREC SIP timer L (ms) Timer L used towards SIPREC server. Default value 32s.
SIPREC SIP timer M (ms) Timer M used towards SIPREC server. Default value 8s.
SIPREC SIP timer T2 (ms) SIP timer T2 used towards SIPREC server. Default value 4s.

12.18 SIP Parameters

These parameters set SIP timers, as defined in RFC 3261. All values are in ms.

Extra parameters are available, see the following table:

Table 17: SIP Parameters
Parameter Name Description
Add Q850 header to timer expiration’s CANCEL. If enable, then a Q850 header is added to the CAN-

CEL generated by a timer expiration. Currently, only
time C is supported.

Terminate dialog upon failure replies for in-dialog
OPTIONS

Terminate dialog if in-dialog OPTIONS request fails
with reply that should cause dialog termination.
Reply codes that should terminate the dialog accord-
ing to RFC 5057 are: 404, 410, 416, 482, 483, 484,
485, 502, 604.
Additionally ABC SBC handles following replies the
same way as those listed above: 408, 480.
Affects only INVITE based dialogs (i.e. calls).
The purpose of this option is to cope with inter-
operability issues caused by badly implemented SIP
user agents that can’t handle in-dialog OPTIONS cor-
rectly.
Default value: on (terminate the dialog)

Remove filtered m-lines Remove media lines filtered out by media
whitelist/blacklist. These lines are left in SDP
but marked as inactive if not enabled.
This option is applied globally on all calls with active
media whitelist or blacklist (see Media Type Filter-
ing).
The purpose of this option is to cope with interoper-
ability issues caused by badly implemented SIP user
agents that can’t handle inactive media streams cor-
rectly.
Default value: off (i.e. mark media lines as inactive)

continues on next page

12.17. SIPREC Parameters 355

FRAFOS ABC SBC Handbook, Release 5.3

Table 17 – continued from previous page
Filter forced transports Remove media lines that do not match outbound

transport forced by Force RTP/SRTP action (see RTP
and SRTP Interworking). These lines are left in SDP
but converted to the required transport if not enabled.
For example:

Caller is sending one audio stream over
RTP and another audio stream over SRTP
(commonly used when SRTP is config-
ured as optional on a phone).
SRTP is forced in outbound rules on
ABC SBC.
If Filter forced transports option is “off”
ABC SBC forwards SDP with two audio
streams to the callee both of them over
SRTP.
If this option is “on” ABC SBC for-
wards SDP with just one audio stream
over SRTP to the callee.

This option is applied globally on all calls using Force
RTP/SRTP action.
The purpose of this option is to cope with interoper-
ability issues caused by user agents that can’t handle
multiple media streams of the same type.
Default value: off (i.e. convert the media lines to the
forced transport)

Call transfers using late offer-answer Use offer-less INVITE when generating new call leg
during call transfer (unattended call transfer or call
transfer replacing non-local call).
It is probably the only reliable way that should work.
Unfortunately too many SIP UAs do not implement
late offer-answer correctly.
Default value: off

Predefined payloads for call transfers Coma separated list of codecs to be added into SDP
of INVITE generated during call transfer (unattended
call transfer or call transfer replacing non-local call).
If no codecs are listed, only codecs used within the
call are used what can cause troubles if the destination
doesn’t support these.
Only simple codecs can be used (no parameters can
be specified).
For example: PCMU,PCMA
Default value: empty

Force outbound interface If enabled, UDP packets sent will be forced to use the
system interface attached to the outbound call agent.
Please note that this option relies on operating system
capabilities that have heavy limitations.
Especially, when forcing the outbound interface, the
Linux IP stack will set the source IP on its own, which
might lead to unwanted effects (invalid source IP that
e.g. SEMS might not be using at all). In many cases,
this option will not effect the desired functionality and
is not recommended.
Manually configured source IP based policy routing is
the preferred method.
Default value: off

12.18. SIP Parameters 356

FRAFOS ABC SBC Handbook, Release 5.3

12.19 SRTP Parameters

These parameters define the security handshake of Secure RTP. SRTP is always used for WebRTC and is used
with some encryption-enabled SIP devices.

Table 18: SRTP Parameters
Parameter Name Description
DTLS certificate file Certificate file. Optional. Keep empty

for self-signed certificate. That’s the
recommended configuration: other
certificates may cause DTLS packets to
become too large and consequently fail
to traverse NATs due to IP
fragmentation.

DTLS private key file Private key file. Optional.
SRTP crypto-suite AES_CM_128_HMAC_SHA1 Enables / disables the corresponding

crypto suite. It should be left enabled
unless required otherwise for
interoperability.

SRTP crypto-suite AES_CM_128_HMAC_SHA1_80 Enables / disables the corresponding
crypto suite. It should be left enabled
unless required otherwise for
interoperability.

SRTP crypto-suite AES_256_CM_HMAC_SHA1_80 (SDES only) Enables / disables the corresponding
crypto suite. It should be left enabled
unless required otherwise for
interoperability.

SRTP crypto-suite AEAD_AES_256_GCM Enables / disables the corresponding
crypto suite. It should be left enabled
unless required otherwise for
interoperability (available since 5.2).

SRTP crypto-suite AEAD_AES_256_GCM_8 (SDES only) Enables / disables the corresponding
crypto suite. It should be left enabled
unless required otherwise for
interoperability (available since 5.2).

SRTP crypto-suite AEAD_AES_128_GCM Enables / disables the corresponding
crypto suite. It should be left enabled
unless required otherwise for
interoperability (available since 5.2).

SRTP crypto-suite AEAD_AES_128_GCM_8 (SDES only) Enables / disables the corresponding
crypto suite. It should be left enabled
unless required otherwise for
interoperability (available since 5.2).

SRTP crypto-suite preference order Comma separated list of crypto suites.
I.e. ‘AEAD_AES_256_GCM ,
AEAD_AES_128_GCM’. Suites
offered by the remote endpoint will
always take precedence. Suites that are
supported but not listed in this list are
appended at the end according to the
default order (available since 5.2).

12.19. SRTP Parameters 357

FRAFOS ABC SBC Handbook, Release 5.3

12.20 Syslog Parameters

These parameters allow to fine-tune behavior of syslog daemon. This is primarily useful when the syslogs are
configured to be sent to an external system.

Table 19: Syslog Parameters
Parameter Name Description
Log level This option changes the SEMS syslog globally. See the Section Reference of Log

Level Parameters for a full list of options.
Syslog facility Name of syslog facility to use for logs from the main SBC processes. Possible values

are ‘daemon’, ‘user’, ‘local0’, ‘local1’ . . . ‘local7’.
Enable remote syslog
servers

If turned on, syslog messages will be sent to an external syslog host(s) additionally
to the local filesystem.

Remote syslog server
address

Address of the external syslog server.

Remote syslog server
port

Port number on which the external syslog server listens.

Remote syslog trans-
port

Transport protocol on which an external syslog server listens. Use ‘udp’ or ‘tcp’.

Log level for remote
syslog server

Log messages above this level will be sent to the external syslog server. Use one of
‘emergency’, ‘alert’, ‘critical’, ‘error’, ‘warning’, ‘notice’, ‘info’, ‘debug’.

Log files rotation fre-
quency

Sets the interval for log files rotation. Use “daily”, “weekly” or “monthly”.

Number of old log files
to keep

Sets the number of rotated log files to keep before deletion.

Secondary remote sys-
log server address

Address of the secondary external syslog server. Use empty value to not use sec-
ondary external syslog server.

Secondary remote sys-
log server port

Port number on which the secondary external syslog server listens.

Secondary remote sys-
log transport

Transport protocol on which secondary external syslog server listens. Use ‘udp’ or
‘tcp’.

Log level for sec-
ondary remote syslog
server

Log messages above this level will be sent to secondary external syslog server. Use
one of ‘emergency’, ‘alert’, ‘critical’, ‘error’, ‘warning’, ‘notice’, ‘info’, ‘debug’.

Send CDRs to remote
syslog server

Enables or disables including the CDR entries in the log messages sent to the remote
syslog server.

12.20. Syslog Parameters 358

FRAFOS ABC SBC Handbook, Release 5.3

12.21 Signaling SSL

Table 20: Signaling SSL Parameters
Param-
eter
Name

Description

Re-
voked
certifi-
cates
(CRL)
file

CRL file holding a list of revoked certificates. Used by sems signaling process only.

Min-
imal
sup-
ported
TLS
version

The minimal supported TLS version on signaling interfaces. Use tls1 or tls1.1 or tls1.2.

TLS ci-
pher list

The supported TLS ciphers list for signaling interfaces and proxy and similar apps on custom
interfaces, openssl syntax.

TLS EC
curves
list

Allows for setting the EC curves used with TLS for signaling interface. The string is a colon
separated list of curve NIDs or names, for example “P-521:P-384:P-256”.

Dump
TLS
session
keys to
file

If enabled, the TLS session keys will be dumped to a file for diagnostics (into directory
/data/pcap/tls_keys). Disabled by default.
Requirements: note that this option must be enabled if one wishes to download from the GUI a
bundle composed of pcap files and tls keys. Otherwise, the bundle may only contain pcap files.
Limitations: WebRTC interface isn’t supported.

12.22 RTP handling Parameters

Table 21: RTP handling Parameters
Parameter Name Description
Force symmetric RTP for mediaserver apps: If enabled, embedded media processing actions will

ignore IP addresses in callers’ SDP and send its RTP
to where caller’s RTP came from.

RTP keep-alive frequency Defines how often if at all ABC SBC sends RTP keep-
alive packets to its peers. See Setting RTP Inactivity
Timer and Keepalive Timer.

RTP timeout Defines period of time after which a call is terminated
if RTP packets stop arriving. See Setting RTP Inactiv-
ity Timer and Keepalive Timer.

Learn remote media address interval Interval (in milliseconds) after first RTP packet re-
ceived in which RTP address may still change and will
be re-learned. I.e. after that interval SEMS locks on
the remote address. Especially for re-learning after
re-Invite, this may prevent locking on the old address
due to some late RTP packets from the old remote ad-
dress.
Default value: 0 ms (disabled), lock on the first packet

continues on next page

12.21. Signaling SSL 359

FRAFOS ABC SBC Handbook, Release 5.3

Table 21 – continued from previous page
Recording playout buffer type Type of playout buffer used for data synchronization

while recording into a WAV file.
Possible values:

• adaptive
Sophisticated playout buffer that should be
more appropriate from user’s perspective, espe-
cially with higher jitter and packet loss showing
in the RTP stream.

• simple
Basic buffering that might not be sufficient with
lossy line.

Default value: adaptive

12.22. RTP handling Parameters 360

Chapter 13

Reference of Log Level Parameters

In several ABC SBC configuration places, the log reporting levels may be configured. The ABC SBC allows to
set the logging levels both globally and by functional areas. The increase log level may help with troubleshooting
however caution is advised. Increased log level can dramatically degrade system performance.

This reference provides explanation how to set the proper logging level. Log levels are represented with an integer
value and have the following possible values:

• 0 / ERROR

• 1 / WARNING

• 2 / INFO

• 3 / DEBUG

If only log-level is set, it is used globally. The log level can be changed however for only some specific func-
tional area by preceding the value with “Category:Subcategory=” expression. Multiple such expressions can be
combined with each other using semicolon as shown in the following example:

1;SIP:Transaction=3;SDP:Parser=3;RTP:*=3;PLUGIN:sbc=3

This example sets the default log level to 1, whereas SIP transaction machine, SDP parser, RTP engine and SBC
logic reports at log level 3.

Table 1: Log Level categories
Category Subcategory
Core

• Main
• Config
• Thread
• Timer
• Events
• SessionContainer
• SessionProcessor
• SessionWatcher
• MediaProcessor
• Plugin
• Utils

continues on next page

361

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
SIP

• Ctrl
• Parser
• Transport
• Transaction
• Dialog
• OfferAnswer
• Session
• Registration
• Subscription
• DNS
• Blacklist

B2B
• B2BSession
• B2BMedia

SDP
• Parser
• MimeBody

RTP
• Stun
• RtpPacket
• RtcpPacket
• RtpTransport
• RtpStream
• RtpAudio

SRTP
• SRTP
• SDES
• DTLS
• ZRTP
• Socket

AUDIO
• Audio
• AudioFile
• AudioMixer
• Conference
• Playlist
• Prompt
• Jitter

continues on next page

362

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
PLUGIN

• sbc
• redis_store
• websock
• reg_agent
• cc_gui
• cc_gui_rules
• sbc_replication
• webconference
• rest
• dsm
• xmlrpc2di

13.1 Debug log level per node or per system

There is an option to set a debug level for all components either per whole system or just per single node. Debug log
level will be enabled or disabled for following applications: sems, xmloredis, pkapman, gocertbot, goministrator,
statman, prov2json, json2redis, webconf-api, gui.

13.1.1 Per system

SSH to a CCM node and on a command line execute following command:

% sbc-toggle-debug -c -e

This will enable debug logging of all supported tools in whole system. To disable debug logging just execute:

% sbc-toggle-debug -c

13.1.2 Per node

SSH to a node for which a debug level should be set and execute following commands:

% sbc-toggle-debug -a -e

This will enable debug logging of all supported tools for that specific node. To disable debug logging just execute:

% sbc-toggle-debug -a

13.1. Debug log level per node or per system 363

Chapter 14

Reference of Call Agent Configuration
Parameters

This reference lists all Call Agent configuration parameters used in ABC SBC. These parameters take effect on
any traffic that is specific to a Call Agent without need to place any additional action into the Call Agent’s rulebase.

The actions are grouped as follows:

• Destination Monitor Parameters

• Blacklisting Parameters

• Registration Agent Parameters

• Topology Hiding Parameters

• Firewall Blacklisting Parameters

• Security Parameters

• SIP Timer Parameters

14.1 Destination Monitor Parameters

These parameters can enable health checks for Call Agents. If enabled, along with blacklisting parameters unre-
sponsive Call Agent’s addresses will be proactively excluded from forwarding.

Parameter Name Description
Monitoring interval (sec) Interval between sending OPTIONS-based health-checks to the monitored Call

Agent. If zero, no monitoring takes place.
Max-Forwards Value of max-forwards header-field in the health-checking OPTIONS requests.

14.2 Blacklisting Parameters

These parameters allow to define for how long a CA’s unresponsive address shall not be used for SIP traffic
forwarding (i.e. how long it will be “blacklisted”). See the Section IP Blacklisting: Adaptive Availability Man-
agement for additional information.

364

FRAFOS ABC SBC Handbook, Release 5.3

Parameter Name Description
Blacklist TTL (seconds) Period of time for which an unresponsive address is hold on blacklist.

If zero, blacklisting is not used.
Blacklist grace timer (milliseconds) Additional period of time to provide a safety buffer in case that

conflicting timers occur along a SIP path.
Blacklist Reply Codes ABC Monitor SIP Response codes which if present in a response will cause placing

the downstream SIP server on the blacklist.

14.3 Registration Agent Parameters

Registration agent allows to register the ABC SBC with a third-party SIP service be sending pre-defined REGIS-
TER requests as described in the Section Registration Agent. The following Call Agent parameters define if such
a registration agent shall be active and how its registration parameters shall be formed.

Table 1: Registration Agent Parameters
Parameter Name Description
Enabled Turns a registration agent on or off.
URI domain. Domain name to be used in REGISTER requests

URIs
URI name. User name to be used in REGISTER request URIs
Display name Display names as included in the From header-field of

the REGISTER requests
auth name SIP User id as used in the authentication header fields.

May be different from user names in URIs.
auth password SIP user password used in the digest authentication
Contact Content of the Contact header-field in the REGISTER

requests. Specific usernames may be chosen to make
it easier to identify incoming requests coming to ad-
dresses registered using the registration agent.

Contact HF Params Semi-colon separated header parameters to add to the
Contact header.

Additional headers \r\n-separated headers to add to the requests. I.e. ‘x-
my-hdr: v1\r\nx-my-hdr2: v2’.

Registration interval (seconds) Time between subsequent registrations are sent
Retry interval (seconds) Period of time to keep till the next attempt when the

previous failed
Next Hop (IP address) Address of a destination to which a request will be

sent
continues on next page

14.3. Registration Agent Parameters 365

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page
Registrar affinity Binding of the registrar. Sticky mode records the reply

IP/Port/Transport and initially tries that for refreshing
the registration. Lazy is same as sticky except that it
does a lookup of the recorded reply IP address in the
SBC’s internal reverse-dns cache table and discards
the record if it is not found in the cache. Active does
not record the reply address at all.
Limitations:

• In Lazy mode, only the IP address is checked
for existance in the cache and not port & trans-
port.

• Items in the reverse-dns cache are still con-
sidered valid after their expiry, until the dura-
tion specified in the DNS Cache Grace Period
global configuration passes.

Available since: 5.2
Bulk Contact Turn on to support the SIP bulk contact registration

form as described in RFC3680.

14.4 Topology Hiding Parameters

The Section Topology Hiding discussed purpose and use of Topology Hiding. The following options en-
able/disable this functionality for the respective Call Agents.

Parameter Name Description
Enabled Turning this option replaces occurrences of IP addresses in well-known header-fields of

SIP signaling with those of the ABC SBC .
Cross-Realm If enabled, topology hiding is used even when signaling ingress and egress realms are

the same.

14.5 Firewall Blacklisting Parameters

Automated IP address blocking is discussed in the Section Automatic IP Address Blocking. Several attributes
defined what kind of Call Agent behavior adds to the score that may eventually lead to blacklisting of the source
IP address.

Parameter Name Description
Sanity If turned on, invalid SIP messages add to the auto-blocking score and may lead to

blocking of their originator. Otherwise they are silently ignored.
Auth If enabled, failed authentication add to the auto-blocking score and may lead to blocking

of their originator. Otherwise only events are reported but no further action is taken.

14.4. Topology Hiding Parameters 366

FRAFOS ABC SBC Handbook, Release 5.3

14.6 Security Parameters

Parameter Name Description
Don’t expect authentication Don’t expect any authentication on this call agent. Drops any 401/407 replies

from this agent. Removes ‘Authorization’ and ‘WWW-Authorization’ sent
towards this agent, ‘Proxy-Authenticate’ and ‘WWW-Authenticate’ headers
received from this agent.

14.7 SIP Timer Parameters

Parameter Name Description
SIP Timer [X] Allows setting SIP timers per agent. Each SIP timer set overrides the global

configuration.
Failover reduce factor Failover reduce factor is used to divide B, F & M timers when the destination call

agent has a backup CA. This allows for a faster failover. Leaving it empty uses the
default value of 4.

14.6. Security Parameters 367

Chapter 15

Reference of Default Port Numbers

The reference lists port numbers the ABC SBC, Cluster Config Manager and ABC Monitor uses. It is particularly
useful when considering firewall policies for firewalls placed in front of the ABC SBC. The reference lists default
port numbers, transport protocols, container opening the port, service listening on that port and the interface on
which the respective applications are permitted. In addition to the SBC interfaces (see SBC Interfaces), some ap-
plications may be listening on all interfaces while some management applications are using the loopback interface
for internal communication.

Note that while the ABC SBC only accepts traffic on the ports and interfaces specified in the following specifica-
tion, further restrictions may apply. Signaling is only accepted from well-defined Call Agents and certain traffic
may be blacklisted (see Manual SIP Traffic Blocking).

368

FRAFOS ABC SBC Handbook, Release 5.3

Port Container Description
22 ABC SBC (ssh / TCP) Secure shell server. Used for remote management.

Value 0 can be used for default port, which is 24. It can be set
using ssh app on SBC interface.

25 ABC SBC (SMTP / TCP) Local Email relay. Used to forward email alerts.
From outside perspective it acts as a client.

161 ABC SBC (SNMP / UDP) Internal SNMP management.
443 Cluster Config Manager (HTTPS / TCP) Administrative GUI.
444 Cluster Config Manager (HTTPS / TCP) Allow ABC SBC to download new

configuration and upload status file to the Cluster Config
Manager.

873, 1873 ABC Monitor (HTTPS / TCP) Allow ABC SBC to upload PCAP files to the
ABC Monitor. 1873 is used for secure connection, 873
otherwise.

1443 ABC SBC (HTTPS / TCP) XML-RPC provisioning.
3306 Cluster Config Manager (TCP) MySQL database.
5060 ABC SBC (sip / UDP, TCP) SIP signaling.
5061 ABC SBC (sip / TLS)SIP signaling over TLS.
6379 ABC SBC (TCP) redis replication, if HA is used.
8080, 8081 ABC SBC (TCP) SIP over Websocket WebRTC.
8090 ABC SBC (TCP) XML-RPC remote programming interface
10000 to 60000 ABC SBC (UDP) Audio/video media.
15441, 4443 (TCP) webconference demo. available only on request.
1444 ABC SBC (TCP) RESTful port for AWS SNS, disabled by default.
4242 ABC SBC (HTTPS) sbc-xmloredis RESTful json API, exposing various

metrics.
4243 ABC SBC (HTTPS) sbc-pkapman RESTful json API, allowing pcap files

browsing & download.
4244 ABC SBC (HTTPS) sbc-webconf-api RESTful json API, allowing various

actions on live web conference calls.
4247, 4248 ABC SBC (TCP) sbc-eventbeat-[1,2] Expose live metrics and statistics

about the redis queues event processing.
4249 ABC SBC (HTTPS) sbc-goministrator RESTful json API , allowing

various actions on host.
4250 ABC SBC (HTTPS / WS) sbc-goplog API, allowing log files browsing and

viewing.
4251 ABC SBC (HTTPS) sbc-goconf RESTful json API, allowing Cluster

Config Manager to push configuration to the ABC SBC node.
5044, 5045 ABC Monitor (beat) ELK beats interface, allowing ABC SBC to send redis

events to the ABC Monitor. 5045 is used for secure connection,
5044 otherwise.

Additional fixed source port numbers shall be opened for the ABC SBC acting as client reaching outside servers
as listed in the following table:

SBC Client Port Description
NTP/123/UDP Time Synchronization
domain/53/UDP DNS Resolver

Other applications running on the ABC SBC use external applications while locally binding to ephemeral ports.

369

FRAFOS ABC SBC Handbook, Release 5.3

Remote Server Port Description
HTTP/80 Software package updates
HTTPS/443 Software package updates
syslog/514 remote syslog facility if configured under Global Config / syslog-ng
rsync/873 remote PCAP/WAV storage if enabled under Global Config / replicate recordings /

traffic log
rsync/1873 remote PCAP/WAV storage if enabled under Global Config / replicate recordings /

traffic log, using TLS if secure connection to ABC Monitor enabled
6379,redis redis replication and event generation to a ABC Monitor
16379,redis redis replication and event generation to a ABC Monitor over TLS if enabled
ldap/389 ldap
ldaps/636 ldaps

370

Chapter 16

Reference Interface Parameters

The following parameters can be defined at interface level:

Parameter Name Description
force_via_address When enabled, incoming requests are replied to the address shown in their Via header

field. This conforms to the RFC3261 specification but often fails to traverse NATs and
also permits a reflection attack through the ABC SBC.

wspath_xxx The option, where xxx can be set as needed, sets up an HTTP proxy from path /xxx on
HTTPS 443 port (or other port number if using a non-standard one) to the Websocket
port on localhost . (It has to be used only on interface using system interface “lo”.

371

Chapter 17

Reference Application Interface Options

Starting 4.5, the ABC SBC offers the possibility to configure some application option per logical interface, allow-
ing a better control over which process is listening on which port.

Some applications require a TLS profile assigned to corresponding SBC or applied interface.

Initial available applications are:

• SSH

• Media

• Signaling

• WebSocket signaling

• SNMP

• Prometheus Pull Service

• TURN server for websocket

• PCAP query service

• Local monitoring query service

• Call state HA replication

Starting 4.6, the following applications are also available:

• Management for host

• HTTP proxy

• HTTP redirect

• Local webconf API

Starting 5.0, the following applications are also available:

• frafos-logprovider

Starting 5.1, the following applications are also available:

• Log files provider

Please note that starting 5.1, the frafos-logprovider has been replaced by Log files provider

In the following descriptions, those interfaces acronym stand for :

• imi: internal management interface

• si: signaling interface

• mi: media interface

372

FRAFOS ABC SBC Handbook, Release 5.3

• ws: websocket interface

• ci: custom interface

17.1 SSH

The ssh application allows a shell access via the associated interface on the configured port options.

The application may be enabled on all interface types.

Parameter Name Description
Port Port allowing ssh access.

17.2 Media

The media application impacts SBC communication handling. Note that this application only has effect on SBC
node.

The application is exclusive and mandatory to mi interface.

The port range specifies a UDP port range used for media traffic, and does not use TLS.

Parameter Name Description
Ports Port range on which SBC may open a socket for media communications.
TOS This sets “type of service” field in IP packets header.

Default value: 184

17.3 Signaling

The signaling application impacts SBC communication handling. Note that this application only has effect on
SBC node.

If “TLS Port” is not empty, a TLS profile is required.

The application is exclusive and mandatory to si interface.

Parameter Name Description
Port Ports on which SBC will open a signaling socket.
TLS Port (optional) TLS port on which SBC opens a socket for secured signaling communication.
Interface Options Special interface options.

Note: allowed value is force_via_address.
TOS This sets “type of service” field in IP packets header.

Default value: 104
Greylist Enables usage of greylist filter.

17.1. SSH 373

FRAFOS ABC SBC Handbook, Release 5.3

17.4 WebSocket signaling

The websocket application allows signaling communication over websocket interface.

If “TLS enabled” is set, a TLS profile is required.

The application is exclusive and mandatory to ws interface.

Parameter Name Description
Port Listening port of the websocket server.
TLS enabled Enable secure communications.
Interface Options Special interface options.

Note: value must start by wspath_.
Greylist Enables usage of greylist filter.
TCP keep-alive Set TCP keep-alive value (seconds) on WS. 0 disables it. I.e. if it is set to 120, then

the SBC will try to send a TCP keep-alive after 120 seconds of of inactivity and
wait another 120 seconds for a response. This will happen probes (below) times
before timing out the connection.

TCP keep-alive probes How many times to try to send keep-alive message without getting a response.

17.5 SNMP

The snmp application enables SNMP daemon listening. Note that this application only has effect on SBC node.

It does not require TLS profile, as TLS is not used.

The application may be enabled on ci interface.

Parameter Name Description
Port Port on which the SNMP server listens.

17.6 Prometheus Pull Service

Enable the prometheus pull service application on SBC node, allowing external prometheus scrapers to query the
pull service to get statistics on the SBC.

The application may only be enabled on ci interfaces.

Application is available since 5.2.

Parameter Name Description
Port The http(s) port of prometheus pull service.
Path The url path part which to serve the statistics on.
TLS enabled Use TLS on the pull service. Plain http will not be allowed. This can follow the

configuration of the TLS profile (i.e. auth with trusted clients).
HTTP Auth. Username Whether or not to use HTTP basic authentication on the pull service.
HTTP Auth. Password Whether or not to use HTTP basic authentication on the pull service.
Threads Number of threads to use while serving the requests.
Update interval Interval in milliseconds to update the served statistics.

17.4. WebSocket signaling 374

FRAFOS ABC SBC Handbook, Release 5.3

17.7 TURN server for websocket

It enables the TURN server on given node. It is possible to configure one TURN server per node but it can be
configured for more than one node.

It does not require a TLS profile.

The application may be enabled on ci interface.

Application is available since 4.5 to 5.1 releases. It was removed in 5.2 release, and it is planned to be supported
using separate TURN container again in 5.3 release.

Note well: using the TURN server application might expose the SBC to certain security risks. Indeed, the TURN
server application makes use of static credentials for compatibility purposes, such that these well known cre-
dentials might be misused. It is therefor important to limit the use of the TURN server application to the use
case where it is absolutely required (support TCP media transport). Enabling this application is absolutely not
necessary to supporting WebRTC in general.

Parameter Name Description
Listening port Listening port of the TURN server.
Aux server Auxiliary server address in the format IP:port.
Relay IP Note: mandatory.
External IP TURN Server public/private address mapping, if the server is

behind NAT. In that situation, the External IP will be reported as
relay IP address of all allocations. This scenario works only in a
simple case when one single relay address is be used, and no
RFC5780 functionality is required. That single relay address must
be mapped by NAT to the ‘external’ IP. The External IP value, if not
empty, is returned in XOR-RELAYED-ADDRESS field. For that
‘external’ IP, NAT must forward ports directly (relayed port 12345
must be always mapped to the same ‘external’ port 12345).

UDP port range min port Sets the UDP range that is used for relaying media start port. Note:
mandatory.

UDP port range max port Sets the UDP range that is used for relaying media end port. Note:
mandatory.

Auth user Sets the username used for TURN server authentication. Note:
mandatory.

Auth password Sets the password used for TURN server authentication. Note:
mandatory.

Realm for users Realm passed, which is usually domain name.
Media IP to allow UDP on firewall Sets the IP address that will be allowed on SBC firewall to talk to

the TURN.
UDP port range min port for media IP Sets the UDP range that is used for media IP, start port.
UDP port range max port for media IP Sets the UDP range that is used for media IP, end port.

17.8 PCAP query service

The sbc-pkapman API generates and serves pcap files based on an aggregation of the pcap files available on the
file system. The API will by default listen on the localhost interface, reachable via http. For every other interface
application enabled, the API will listen exclusively via https, serving the configured TLS profile, which is required.

Requirements: SEMS’s global option “Dump TLS session keys to file” Signaling SSL must be enabled if one
wishes to download both pcap files and session TLS keys into a zip’ed bundle. Otherwise, the bundle may only
contain pcap files.

Limitations: WebRTC interface don’t support dump of the TLS keys.

The application only exists on SBC node and it is mandatory and exclusive to imi interface.

17.7. TURN server for websocket 375

FRAFOS ABC SBC Handbook, Release 5.3

Application is available since 4.5.

Parameter Name Description
Port Port on which the API server listens.

Note: value not editable (4243).

17.9 Local monitoring query service

The sbc-xmloredis API serves some metrics issued from different sources. The API will by default listen on the
localhost interface, reachable via http. For every other interface application enabled, the API will listen exclusively
via https, serving the configured TLS profile, which is required.

The application only exists on SBC node. It is also exclusive and mandatory to imi interface.

Parameter Name Description
Port Port on which the API server listens.

Note: value not editable (4242).

17.10 Management for host

The sbc-goministrator API

The API will by default listen on the localhost interface, reachable via http. For every other interface application
enabled, the API will listen exclusively via https, serving the configured TLS profile, which is required.

The application may be enabled on imi interface.

Application is available since 4.5.

Parameter Name Description
Port Port on which the API server listens.

Note: value not editable (4249).

17.11 Local webconf API

The sbc-webconf API

The API will by default listen on the localhost interface, reachable via http. For every other interface application
enabled, the API will listen exclusively via https, serving the configured TLS profile, which is required.

The application is exclusive and mandatory to imi interface.

Application is available since 4.6.

Parameter Name Description
Port Port on which the API server listens.

Note: value not editable (4244).

17.9. Local monitoring query service 376

FRAFOS ABC SBC Handbook, Release 5.3

17.12 Log files provider

The sbc-goplog API

The API will by default listen on the localhost interface, reachable via http. For every other interface application
enabled, the API will listen exclusively via https, serving the configured TLS profile, which is required.

The application is exclusive and mandatory to imi interface.

Application is available since 5.1.

Parameter Name Description
Port Port on which the API server listening.

Note: value not editable (4250).

17.13 HTTP proxy

Setup an HTTP proxy, based on nginx reverse proxy. The application adds the X-Real-IP, Upgrade and Connec-
tion headers. The template (/etc/frafos/templates/nginx/proxy.tmpl) may be overloaded, as described in Command
Line Reference.

If “TLS enable” is set, a TLS profile is required.

The application may be enabled on ci interface.

Application is available since 4.6.

Parameter Name Description
Source Port Port from which the proxy should operate.
Source Path Path from which the proxy should operate.
Target IP address IP to which the proxy redirect.

Note: mandatory.
Target port Port to which the proxy redirect.

Note: mandatory.
TLS enable Proxy over TLS.

17.14 HTTP redirect

Setup an HTTP redirect pattern, using nginx rewrite directive.

The template (/etc/frafos/templates/nginx/http_redirect.tmpl) may be overloaded, as described in Command Line
Reference.

If “TLS enable” is set, a TLS profile is required.

The application may be enabled on ci interface.

Application is available since 4.6.

Parameter Name Description
Port Port from which the redirect should operate.
Path Path from which the redirect should operate. Path is a regex to which we prefix ^ (start

of line).
Target URL URL to where be redirected.

Note: mandatory.
TLS enable Redirect over TLS.

17.12. Log files provider 377

https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/

FRAFOS ABC SBC Handbook, Release 5.3

17.15 Call state HA replication

Please note that the application only have effect if HA is configured and used.

The redis HA replication application uses internal redis protocol for it’s communications.

The application is exclusive and mandatory to imi interface.

Parameter Name Description
Port Port on which call state redis will be listening.

Note: value not editable (6379).
Enable TLS Make use of the interface’ TLS profile to authenticate and secure redis HA. Redis

internal protocol is used for communications. Please note that, if used, the TLS
certificate must either be loaded with a matching CA certificate or be registered by the
node’ system CA (currently latest debian:12).
Note 1: disable by default.
Note 2: incompatible with the “default certificate” due to the CA certificate requirement.
Note 3: TLS profiles’ “Verify peer certificate” option isn’t taken into account.

17.15. Call state HA replication 378

Chapter 18

Command Line Reference

The administrative GUI is the preferred way of the ABC SBC. However there are cases like the initial configuration
and/or automation when accessing the ABC SBC via Command Line is useful.

379

FRAFOS ABC SBC Handbook, Release 5.3

18.1 Configuration Management

CLI Purpose Reference
sbc-install initial ABC SBC installation Installation

Procedure
abc-monitor-install initial ABC Monitor installation ABC Monitor

Container
Installation

sbc-backup back up ABC SBC configuration ABC SBC
Recovery
Procedure

sbc-restore recovery of a backed up configuration ABC SBC
Recovery
Procedure

sbc-set-confversion forcibly sets config version number on config master ABC SBC
Recovery
Procedure

sbc-init-config This command configures IP address or DNS name of the main
configuration node, from which ABC SBC node will automatically
get configuration. It has to be run on all SBC nodes. This script is
part of installation procedure.

Web GUI
Configuration
(Cluster
Config
Master)

sbc-set-master set up a configuration master Web GUI
Configuration
(Cluster
Config
Master)

sbc-publish-config Activate the current SBC configuration and make it available for all
nodes.

sbc-daily-backup Creates daily SBC backup, if enabled under Config / Global config
/ Backup tab.

sbc-apply-config Manually applies ABC SBC json configuration on slave node. Use
–help option for command line options help.

sbc-apply- provtables Manually applies ABC SBC provisioned tables on slave. Use –help
option for command line options help.

sbc-passwd Set root user password. Has to be used instead of system passwd
command, to allow the password persistence when replacing
container.

Initial
Configuration

cluster-config-export Export configuration in JSON format.
cluster-config-import Import the configuration exported by cluster-config-export

command.

18.1. Configuration Management 380

FRAFOS ABC SBC Handbook, Release 5.3

18.2 User Management

CLI Purpose Reference
sbc-add-user Add new GUI user or add a user to a group. CLI User

Management
sbc-del-user Remove a GUI user or remove a user from a group. CLI User

Management
sbc-list-groups Get list of existing user groups CLI User

Management
sbc-list-users Get list of SBC users CLI User

Management
sbc-user-passwd Change password of SBC user. Or unlock user locked by too many

login attempts.
CLI User
Management

18.3 Low-Level CLI

CLI Purpose Ref-
er-
ence

sbc-create-config module This command regenerates configuration files from their templates.
Note: if needed, instead of tweaking the template itself (usually in
/etc/frafos/templates) , you should create a copy with the *.local suf-
fix in the /data/local-templates/*/ directory. The *.tmpl.local files
have files have predominance over the *.tmpl one. If the template im-
ports any macro *.mcr file,it has to be copied to the same directory as
the local template.

sbc-activate-config like sbc-create-config all but restart the appropriate service after the
config generation

sbc-loglevel action [loglevel] Shows or sets the logging level for the ABC SBC signaling process
. Action is either ‘get’ to retrieve current value or ‘set’ to set it.
Loglevel takes category and level. Log files are stored in the directory
/var/log/frafos

Ref-
er-
ence
of
Log
Level
Pa-
ram-
eters

sbc-status Shows ABC SBC node status, which is collected automatically every
minute and also shown on config master node GUI on System status
page.

sbc-events-queue Show number of events waiting in redis queue on Sbc to be delivered
to primary and secondary ABC Monitor.

18.2. User Management 381

FRAFOS ABC SBC Handbook, Release 5.3

18.4 HA CLI

In previous ABC SBC releases up to 4.1, the high availability solution used was based on Pacemaker. The ABC
SBC 4.2 was a transitional release that removed the Pacemaker based HA solution, before new Keepalived based
HA solution was introduced in 4.3 release.

CLI Purpose Refer-
ence

sbc-ha-offline Forces the node when run to be put forcibly into HA FAULT state
sbc-ha-online Clears the forcibly set HA FAULT state set by sbc-ha-offline
sbc-ha-status Shows the node’s current HA status, which can be MASTER, SLAVE or

FAULT.

18.5 ABC Monitor Configuration Management

CLI Purpose Reference
abc-monitor-backup-config create backup of ABC Monitor config ABC Monitor Backup and

Restore Operations
abc-monitor-restore-config restore backup of ABC Monitor config ABC Monitor Backup and

Restore Operations
abc-monitor-set-gui configures ABC Monitor GUI https port
abc-monitor-reset-access Reset access to ABC Monitor and show the

initial screen again.

18.4. HA CLI 382

Chapter 19

Reference of Used Open-Source Software

The key components of ABC SBC are built as commercial software fully owned by FRAFOS GmbH and its
subsidiaries. Additionally it relies on the Linux operating systems and numerous accompanying libraries and
components provided by third parties under the following license terms:

• bash , GPLv3+

• boost: Boost Software License & similar (http://www.boost.org/users/license.html)

• cronie , MIT and BSD and ISC and GPLv2+

• crontabs , Public Domain and GPLv2

• dialog , LGPLv2

• dmidecode , GPLv2+

• ethtool , GPLv2

• expat (XML parser): MIT https://sourceforge.net/p/expat/code_git/ci/master/tree/expat/COPYING

• fence-agents-all , GPLv2+ and LGPLv2+

• flite , X11-like http://www.festvox.org/flite/doc/flite_2.html

• hiredis , BSD https://github.com/redis/hiredis/blob/master/COPYING

• iLBC: BSD-like

• js , GPLv2+ or LGPLv2+ or MPLv1.1

• json-c: MIT (https://github.com/json-c/json-c/blob/master/COPYING)

• jsonxx: MIT? (https://github.com/hjiang/jsonxx/blob/master/LICENSE)

• libbcg729: GPLv3 (https://github.com/BelledonneCommunications/bcg729/blob/master/LICENSE.txt)

• libcap , LGPLv2+

• libcurl: MIT/X derivate license https://curl.haxx.se/docs/copyright.html

• libevent: BDS-like http://libevent.org/LICENSE.txt

• libisac: WebRTC license

• libopus: BSD

• libosip2 , LGPLv2+

• libpcap , BSD with advertising

• librsvg2 , LGPLv2+

• libsrtp , BSD-like https://github.com/cisco/libsrtp/blob/master/LICENSE

• libtiff , BSD-like (http://www.libtiff.org/misc.html)

383

http://www.boost.org/users/license.html
https://sourceforge.net/p/expat/code_git/ci/master/tree/expat/COPYING
http://www.festvox.org/flite/doc/flite_2.html
https://github.com/redis/hiredis/blob/master/COPYING
https://github.com/json-c/json-c/blob/master/COPYING
https://github.com/hjiang/jsonxx/blob/master/LICENSE
https://github.com/BelledonneCommunications/bcg729/blob/master/LICENSE.txt
https://curl.haxx.se/docs/copyright.html
http://libevent.org/LICENSE.txt
https://github.com/cisco/libsrtp/blob/master/LICENSE
http://www.libtiff.org/misc.html

FRAFOS ABC SBC Handbook, Release 5.3

• libwebsockets , LGPL2.1 https://github.com/warmcat/libwebsockets/blob/master/LICENSE

• libxml2 , MIT http://www.xmlsoft.org/FAQ.html

• mailx , BSD with advertising and MPLv1.1

• mariadb-server , GPLv2 with exceptions and LGPLv2 and BSD

• monit , AGPLv3

• mysql++ , LGPLv2

• mysql-connector-c++ , GPLv2 with exceptions

• MySQL-python , GPLv2+

• nginx, BSD-like

• net-snmp , BSD http://www.net-snmp.org/about/license.html

• net-snmp-utils , BSD

• ntp , (MIT and BSD and BSD with advertising) and GPLv2

• opencore-amr: Apache V2.0

• openssh-clients , BSD

• openssl, BSD-like https://www.openssl.org/source/license.html

• opus , BSD

• pciutils , GPLv2+

• pcmisc , GPLv2+

• pcs , GPLv2

• perl-Net-SSLeay , OpenSSL

• php-cli , PHP and Zend and BSD

• php-db , PHP

• php-log , PHP

• php-mysql , PHP

• php-pear-XML-RPC , PHP

• php-pecl-runkit , PHP

• php-xmlrpc , PHP and BSD

• python , Python

• python-jinja2 , BSD

• redis , BSD

• rsync , GPLv3+

• sems-gsm , public domain

• sems-speex , modified BSD

• serweb-frmwrk , GPL

• silk: BSD-like

• spandsp (g722, DTMF): LGPL

• speex , BSD

• sqlite , Public Domain

• stunnel, GPL

384

https://github.com/warmcat/libwebsockets/blob/master/LICENSE
http://www.xmlsoft.org/FAQ.html
http://www.net-snmp.org/about/license.html
https://www.openssl.org/source/license.html

FRAFOS ABC SBC Handbook, Release 5.3

• syslog-ng , GPLv2+

• sysstat , GPLv2+

• tcpdump , BSD with advertising

• vconfig , GPLv2+

• yajl (JSON): ISC license https://en.wikipedia.org/wiki/ISC_license

• wireshark , GPL+

The ABC Monitor is based on the “ELK” stack which consists of the following components:

• logstash, Apache2 License

• Elastic Search, Apache2 License

• nginx, BSD-like

• redis, BSD

385

https://en.wikipedia.org/wiki/ISC_license

Chapter 20

Reference Userdata Parameters for AWS
Instances

The behavior of the ABC SBC can be altered by Userdata passed to it during instance launch. See the
following link for more information about Userdata: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-instance-metadata.html#instancedata-add-user-data

The ability to alter the instance behavior is often useful when instances are started using a CloudFormation tem-
plate. The parameters passed through Userdata must be encoded as attribute name:value pair; name and value are
separated by comma and so are the pairs.

The following table shows reserved attribute names and how they are used.

Attribute Name and Value Description
configurl <URL> Download an ABC SBC backup configuration (only applicable when

ismater:TRUE, if the instance is slave it retrieves the configuration from its
master.

cwgroup <NAME> an additional CloudWatch Dimension to which the ABC SBC sends
CloudWatch metrics; this can be used to group metrics from multiple
instances; note that proper CloudWatch permissions must be set

cwregion <REGION> if CloudWatch metrics is to be gathered in a different region than instance’s
own, set the CloudWatch region using this parameter

ismaster TRUE Enforce configuration master role
master <IP address> Run this instance as configuration slave of a master identified by an IP

address.
remotebootscript <URL> URL of a bash script that will be downloaded and sourced during instance

launch. The script must be finite because the boot process doesn’t continue
until it completes.

rtcecdns <IP address> Address of the primary Monitor

Note that any attribute names including custom ones can be passed via Userdata. When a remotebootscript is used
and started, all the attributes are passed to it as shell variables.

An example of UserData may look like this:

rtcecdns,172.12.1.1, configurl, https://s3-eu-west-1.amazonaws.com/frafos-
→˓abcconfig/40014-honeypot.sql

386

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html#instancedata-add-user-data
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html#instancedata-add-user-data

Chapter 21

Reference XML-RPC functions

In the case that the ABC SBC administrator needs to configure large data sets to CCM GUI, it will be easier to
provision those data automatically with a script as opposed to typing it in using the web-interface. This can be
accomplished using the ABC SBC’s XML-RPC data provisioning interface.

The following example shows a python code fragment for accessing the built-in XML-RPC provisioning server:

#!/usr/bin/python
from xmlrpc import client
server = client.Server('https://username:password@10.0.0.10:1443/rpc.php')

Note that for the python client, a question mark (?) in the password does not work. The user accessing XML-RPC
interface has to be either member of SBCrpc group or member of another group having XML-RPC privilege.

For the XML-RPC access the IP address of the configuration master node has to be used. The XML-RPC is
accessible by default on port 1443.

The XML-RPC interface is self documented via function rpc.help(). When the function is called without any
argument it prints list of all available function. When function name is given as an argument to this function
(rpc.help(<function name>)) it will return detailed help of the specified function.

For example try following calls in python:

print(server.rpc.help())
print(server.rpc.help('rpc.help'))

As of now functions for manipulate following entities are available:

• Provisioned Tables

• Call agents

• TLS profiles

• Nodes

• Logical interfaces

• System interfaces

• Maintenance mode

Bellow is list of all available XML RPC functions. Call rpc.help(<function name>) to get detailed help of specified
function.

387

FRAFOS ABC SBC Handbook, Release 5.3

21.1 Provisioned Tables

Functions for define provisioned tables and manipulate data in them.

Function Name Description
tables.fetch_rules($table_name, $start, $count, $key_values) Get all rules from specified provisioned table.
tables.fetch_rule($table_name, $key_values) Get a rule matching the key from the specified

provisioned table.
tables.insert_rule($table_name, $data) Insert rule into specified provisioned table.
tables.insert_rules($table_name, $rules) Insert multiple rules into specified provisioned

table.
tables.update_rule($table_name, $data) Update rule of specified provisioned table.
tables.update_rules($table_name, $rules) Update multiple rules of specified provisioned

table.
tables.insert_update_rule($table_name, $data) Try update rule of specified provisioned table.

If rule with matching UUID or key columns
does not exists, new rule is inserted.

tables.delete_rule($table_name, $uuids) Delete rule(s) from specified provisioned ta-
ble.

tables.delete_all_rules($table_name) Delete all rules from specified provisioned ta-
ble.

tables.commit($table_name, $msg) Commit working version of provisioned table
into use by signaling and create new working
version by copying the current one.

tables.fetch() Get all provisioned table definitions.
tables.insert($payload) Insert provisioned table.
tables.update($payload) Update provisioned table.
tables.delete($table_name) Delete provisioned table.
tables.delete_room($room_name) Delete a conference room (PIN provtable

type).

For example, to introduce a new entry to the blacklist and check the outcome, the following three RPC commands
must be called: insert_rule, commit and fetch_rules:

data = {"key_value":"sip:restricted@abc.com"}
print(server.tables.insert_rule('test_uri_bl',data))
print(server.tables.commit('test_uri_bl', 'new restricted used introduced'))
print(server.tables.fetch_rules('test_uri_bl'))

This script will result in the following list of URIs shown on the command-line output:

[{'key_value': 'sip:banned@abcsbc.com', 'uuid': '6c01a834-9d32-df09-0217-
→˓000000f074ee'},
{'key_value': 'sip:forbidden@abcsbc.com', 'uuid': '54d15a12-62bc-73c9-8313-
→˓000012f8ae1b'},
{'key_value': 'sip:restricted@abc.com', 'uuid': '6d831a12-88bc-7fa9-7483-
→˓000083ff992a'}]

Note that the routing tables have several predefined mandatory elements that must use the following conventions:

• cagent takes name or UUID of a call-agent

• outbound_proxy and next_hop is passed as string

• boolean parameters next_hop_1st_rq, upd_ruri_host, and upd_ruri_dns_ip take either 0 or 1 as value

• the enumerative parameters route_via takes one of the following values: outbound_proxy, next_hop or ruri

21.1. Provisioned Tables 388

FRAFOS ABC SBC Handbook, Release 5.3

21.2 Call agents

Function Name Description
cagents.fetch($filter) Get call agents
cagents.insert($payload) Insert call agent
cagents.update($payload) Update call agent
cagents.delete($realm_name, $cagent_name) Delete call agent
cagents.add_target($realm_name, $cagent_name, $payload) Add target destination to call agent
cagents.del_target($realm_name, $cagent_name, $payload) Remove target destination from call agent

21.3 TLS profiles

Function Name Description
tls_profile.fetch($filter) Get TLS profiles
tls_profile.insert($payload) Insert TLS profile
tls_profile.update($payload) Update TLS profile
tls_profile.delete($name) Delete TLS profile

21.4 Nodes

Function Name Description
node.fetch($filter) Get SBC nodes
node.insert($payload) Insert SBC node
node.update($payload) Update SBC node
node.delete($name) Delete SBC node

21.5 Logical interfaces

Function Name Description
log_interface.fetch($filter) Get logical interfaces
log_interface.insert($payload) Insert logical interface
log_interface.update($payload) Update logical interface
log_interface.delete($name) Delete logical interface
log_interface.help_app_list() Return list of available applications
log_interface.help_app($application) Return detailed info about an application

21.6 System interfaces

Function Name Description
sys_interface.fetch($filter) Get system interfaces
sys_interface.insert($payload) Insert system interface
sys_interface.update($payload) Update system interface
sys_interface.delete($log_if_name, $owner_type, $owner_name) Delete system interface

21.2. Call agents 389

FRAFOS ABC SBC Handbook, Release 5.3

21.7 Maintenance mode

If the “maintenance mode” is activated, the SBC answers 503 to any request.

The XMLRPC interface allows to toggle a “maintenance mode” for a given node. Please use sems-stats -c
“set_shutdown 1” to trigger the maintenance mode, or sems-stats -c “set_shutdownmode 0” to disable it. At
any time, one may use sems-stats -c “get_shutdownmode” to fetch the current node status.

One may also trigger the maintenance mode via the goministrator API (:4249), using either the
/api/v1/enable/shutdownmode or the /api/v1/disable/shutdownmode endpoints.

Finally, a helper script sbc-shutdownmode exists. Please refer to sbc-shutdownmode -h for more information about
it.

21.7. Maintenance mode 390

Chapter 22

Reference of CCM Configuration
Parameters

This reference lists all CCM configuration parameters. The configuration parameters are grouped as follows:

• Login

• LDAP Parameters

• Backup Parameters

• Management access Parameters

• SBC to CCM authentication Parameters

• Email Parameters

• Certbot Parameters

• Miscellaneous Parameters

22.1 Login

Parameters related to login/logout.

Table 1: Login Parameters
Parameter Name Description
GUI auto-logout time Timeout in minutes of inactivity after which the GUI user is automatically logged out.

Use ‘0’ to disable auto-logout
Max failed login Maximum number of failed logins till the user account is blocked. This is for brute

force hacking protection. Use ‘0’ to disable account blocking due to failed logins.
Blocking period How long the user account is blocked (in seconds) if number of invalid logins reach

the ‘Max failed login’
Allow concurrent lo-
gin

Concurrent login of single GUI user from multiple devices is not allowed by default.
Checking this checkbox will allow it.

Garbage collect time-
out

Timeout (in days) after which the data used for brute force hacking protection are
removed from DB.

Do not allow re-use
passwords - history
length

If this option is set, users are not allowed to set a new password that is the same as
any of the last passwords he or she has used. This field set number of passwords that
are checked.

Password expiration
(days)

Number of days in which user password expire and have to be changed. Set to zero
to never expire.

391

FRAFOS ABC SBC Handbook, Release 5.3

22.2 LDAP Parameters

Cluster Config Manager GUI allow a two step authentication against an LDAP server. The first authentication,
“LDAP auth”, check a user against the LDAP server. Here, the user dn (uid=john,ou=People,dc=example,dc=org)
and it’s password (johnldap) are used. The second check, “GUI auth”, ensure that at least one of the LDAP user
groups’ match one of the GUI capability ABC SBC groups.

Once configured, user wishing to login can use their LDAP UIDs and password onto the Cluster Config Manager
log page.

Table 2: LDAP Parameters
Parameter Name Description
LDAP auth enabled Enable LDAP authentication.
LDAP server address LDAP host on which the LDAP service can be

reached (ldap://IP:PORT or ldap://IP or ldap://my.
domain)

LDAP distinguished name / admin user DN Specifies the distinguished name used to bind to the
LDAP server for lookups.

LDAP credentials / admin user PW Specifies the LDAP credentials used to bind.
base DN such as ‘dc=example,dc=org’ Default search DN of the LDAP.

Ex: For “cn=admin,dc=example,dc=org”, base DN is
“dc=example,dc=org”

extra group such as ‘ou=People’ like in
“uid=john,ou=People ,dc=example,dc=org”

So user only need to register their name (aka “uid”)
please pass any extra bind dn via this parameters.
Ex: user (like john) exist in the form,
“uid=john,ou=People,dc=example,dc=org”, so
we set the following to “ou=People”. GUI
will then concatenate in the form uid=[user
value][extra_group][base_dn] to auth the user
against the ldap server.
Note that to complete a user login, the ldap user must
also be member of a group matching one of the GUI
groups supporting login. This group must be a pri-
mary group of that user.

Enable Active compatibility with Microsoft Active
Directory LDAP

Connect to an Active Directory LDAP server.

User template Please select according to your LDAP configuration.
Microsoft Active Directory users should select
‘sAMAcountName’. Usual OpenLDAP configuration
use ‘uid’, but some setup rely on ‘cn’.

Group template Please select according to your LDAP configuration.
Microsoft Active Directory users should select ‘mem-
berOf’. Usual OpenLDAP configuration use ‘gid-
Number’, but some setup rely on ‘memberUid’.

Verify certificate of LDAP server
Trusted CA certificates file Select a file containing list of certificates to which the

client’s one are check. The certificate must be in PEM
format. Use an Active Directory LDAP server.

Example of an OpenLDAP configuration:

22.2. LDAP Parameters 392

ldap://IP:PORT
ldap://IP
ldap://my.domain
ldap://my.domain

FRAFOS ABC SBC Handbook, Release 5.3

There is a docker container available on github that match the screenshot configuration : https://github.com/frafos/
docker-ldap.

The image come in with 2 users (+ admin) :

User dn pwd note
john uid=john,ou=People,

dc=example,dc=org
johnl-
dap

The following example work for that user.

jane uid=jane,ou=People,
dc=example,dc=org

janel-
dap

The following example doesn’t work for that user. John and
Jane belongs to different groups.

In that following ldap, user john can be authenticated against the ldap via
uid=john,ou=People,dc=example,dc=org. To allow an ldap user to access the ABC SBC GUI, a GUI
group name with access to the GUI must match one of the primary group of the ldap user.

So we create GUI group named after the full dn of one john LDAP group
(cn=GUI,ou=Groups,dc=example,dc=org) :

22.2. LDAP Parameters 393

https://github.com/frafos/docker-ldap
https://github.com/frafos/docker-ldap

FRAFOS ABC SBC Handbook, Release 5.3

You can then login with the credential john and the password johnldap.

Note: If we want Jane to be able to access the GUI, we’ll need to define another ABC SBC GUI groups, matching
one of Jane ldap groups name (cn=Mistyc,ou=Groups,dc=example,dc=org in this case).

Example of a FreeIPA LDAP configuration:

We’ll skip the server configuration part for sanity reasons. We can recommend to have a look at https://www.

22.2. LDAP Parameters 394

https://www.freeipa.org/page/Docker
https://www.freeipa.org/page/Docker

FRAFOS ABC SBC Handbook, Release 5.3

freeipa.org/page/Docker for easy setups.

In our case, the Free IPA server was configured with defaults values, generating the following configuration:

The IPA Master Server will be configured with:
Hostname: ipa.example.test
IP address(es): 172.42.0.142
Domain name: example.test
Realm name: EXAMPLE.TEST

The CA will be configured with:
Subject DN: CN=Certificate Authority,O=EXAMPLE.TEST
Subject base: O=EXAMPLE.TEST
Chaining: self-signed

Client hostname: ipa.example.test
Realm: EXAMPLE.TEST
DNS Domain: example.test
IPA Server: ipa.example.test
BaseDN: dc=example,dc=test

On the FreeIPA side, we’ve created an sbcgui group and a john user belonging to that group. We can query
them over the ldap with the following:

$ ldapsearch \
-D "uid=admin,cn=users,cn=accounts,dc=example,dc=test" \
-w [admin password] \
-H ldap://ipa.example.test \
-b dc=example,dc=test 'uid=john'

(...)

john, users, accounts, example.test
dn: uid=john,cn=users,cn=accounts,dc=example,dc=test
givenName: John
sn: Doe
uid: john
cn: John Doe
displayName: John Doe
initials: JD
gecos: John Doe
krbPrincipalName: john@EXAMPLE.TEST
gidNumber: 681800003
objectClass: top
objectClass: person
objectClass: organizationalperson
objectClass: inetorgperson
objectClass: inetuser
objectClass: posixaccount
objectClass: krbprincipalaux
objectClass: krbticketpolicyaux
objectClass: ipaobject
objectClass: ipasshuser
objectClass: ipaSshGroupOfPubKeys
objectClass: mepOriginEntry
objectClass: ipantuserattrs
loginShell: /bin/sh
homeDirectory: /home/john
mail: john@example.test
krbCanonicalName: john@EXAMPLE.TEST
ipaUniqueID: c81b0b0e-950a-11ee-8471-0242ac2a008e
uidNumber: 681800009
krbPasswordExpiration: 20231207141322Z
krbLastPwdChange: 20231207141322Z

(continues on next page)

22.2. LDAP Parameters 395

https://www.freeipa.org/page/Docker
https://www.freeipa.org/page/Docker

FRAFOS ABC SBC Handbook, Release 5.3

(continued from previous page)

krbExtraData:: AAIC03Flcm9vdC9hZG1pbkBFWEFNUExFLlRFU1QA
mepManagedEntry: cn=john,cn=groups,cn=accounts,dc=example,dc=test
ipaNTSecurityIdentifier: S-1-5-21-1615603866-3760360139-3083941652-1009
memberOf: cn=ipausers,cn=groups,cn=accounts,dc=example,dc=test
memberOf: cn=sbcgui,cn=groups,cn=accounts,dc=example,dc=test

On the CCM side, we’ve created a new cn=sbcgui,cn=groups,cn=accounts,dc=example,
dc=test group with GUI permissions.

Example of an Microsoft Active Directory configuration:

22.3 Backup Parameters

These parameters set ABC SBC daily backups. See also more in Backup and Restore Operations.

Table 3: Backup Parameters
Parameter Name Description
Create daily Sbc
configuration
backups

If enabled, daily snapshot of ABC SBC configuration will be created into backup
gzipped tarball file.

Include provi-
sioned tables in
daily or automatic
backups

If enabled, the daily or automatic backup will include also content of whole provisioned
tables. The automatic backup is created when new container is started and database is
going to be upgraded, for possible restore in case of switch back to older container.

Number of days to
keep backups

Sets the retention period for backup files. All files named sbc-backup-* in the backup
directory older than specified number of days will be deleted on every daily backup run.
Use 0 to disable automatic deletion of old backup files.

Destination direc-
tory for backups

Specifies the destination directory for the daily backup files. Default is “/data/backups”
directory.

Full path to extra
files or dirs to in-
clude in backup

Extra custom files or dirs to include in backup can be listed using full path, more fields
separated by comma. A * wildcard can be used. The path must not contain comma
character.

22.3. Backup Parameters 396

FRAFOS ABC SBC Handbook, Release 5.3

22.4 Management access Parameters

Table 4: Management access Parameters
Parameter Name Description
SSL certificate file for GUI and XML-RPC
interface

Select a file containing SSL certificate in PEM format.

SSL private key file for GUI and XML-
RPC interface

Select a file containing key for SSL certificate in PEM format.

TLS cipher list The supported TLS cipher list for gui, xmlrpc and config pull, in
openssl syntax.

22.5 SBC to CCM authentication Parameters

These parameters are used to authenticate SBCs to CCM on services running on IMI interface like Pullconf, Local
monitoring query service, Management for host and other services.

Table 5: SBC to CCM authentication Parameters
Parameter
Name

Description

Username for
pullconf

Username that SBC nodes are using to pull the configuration from the CCM. The same one
will need to be set in the SBC node in sbc-init-config.

Password for
pullconf

Password that SBC nodes are using to pull the configuration from the CCM. The same one
will need to be set in the SBC nodes in sbc-init-config.

SSL certifi-
cate file for
pullconf

Select a file containing SSL certificate in PEM format (Without password).

SSL private
key file for
pullconf

Select a file containing key for SSL certificate in PEM format (without password).

Trusted CA
certificates
file

Select a file containing list of certificates against which the clients’ certs are checked. If
intermediate CAs are used, the whole chain needs to be in this file. The certificates must be
in PEM format (without password).

Verify peer
certificate

If checked, the CCM verifies the TLS certificate of the peer against the trusted CA certificates.

22.6 Email Parameters

These parameters are used to configure sending emails from CCM.

22.4. Management access Parameters 397

FRAFOS ABC SBC Handbook, Release 5.3

Table 6: CCM Email Parameters
Parameter Name Description
Email address for sending certificate and other alerts Email address to which important alerts like certifi-

cate renewal failure, acquisition success and other are
sent. Field is required to be set if any Let’s Encrypt
certificate is expected to be used

From email address for sending alerts Email address used for From in email alerts, system
default is used if empty.

SMTP email server address server for sending alerts Set the SMTP server address, that emails from CCM
will be sent to. Note: when ABC SBC is running in
container, mail relay on localhost is not available and
external mail server has to be used.

SMTP mail server port Set the SMTP mail server port.
Use secure connection to SMTP mailserver Set if the SMTP connection to mailserver should be

encrypted using TLS or STARTTLS.

SMTP mail server authentication
Use ‘off’ to disable the authentication, or ‘on’ to en-
able it and choose auth type automatically.

Username for SMTP authentication. Set the username for SMTP authentication, if authen-
tication is enabled.

Password for SMTP authentication Set the password for SMTP authentication, if authen-
tication is enabled.

22.7 Certbot Parameters

Cluster Config Manager’ certbot act like the famous Let’s Encrypt certbot. For more information, please referee
to the TLS’ chapter Let’s encrypt gocertbot.

Table 7: Certbot Parameters
Parameter Name Description
Query Let’s Encrypt staging environment In case of testing, we recommend querying the stag-

ing environment to avoid reaching Let’s Encrypt 168h
rate limit.
Please note that staging certificates are not suitable for
productions.

Attempt renewal X days before certificate expiration By default, the certbot attempts to renew a certificate
15 days before it expires.
Please note that this setting doesn’t affect automatic
email notifications about certificate expiration from
Let’s Encrypt.

CRON job interval Set CRON job interval rule (in CRON format), allow-
ing refinement for the interval at which the certbot is
automatically run in an attempt renew near expiration
certificates.

Please note that the certbot is invoked under the following condition: - by CRON job call, every night a 1am -
when a node successfully pull a new configuration - when a configuration has successfully been pushed to a node

You may manually invoke the certbot, from within a Cluster Config Manager’ shell by running the following:

% sbc-gocertbot -d

In case of testing, to avoid reaching LE’ 168h rate limit, please remember to enable the “Query Let’s encrypt
staging environment” Cluster Config Manager’ config options.

22.7. Certbot Parameters 398

FRAFOS ABC SBC Handbook, Release 5.3

22.8 Miscellaneous Parameters

Table 8: Miscellaneous Parameters
Parameter
Name

Description

Automatically
add new nodes

If enabled, records for new nodes that pull config from configuration master will be auto-
matically added. If disabled, the configuration master will refuse to provide configuration to
nodes that are not already defined in Nodes configuration.

Compatibility
mode

When the CCM is used with older SBCs, it is possible to select SBC version here. CCM will
then hide settings (like: rule conditions and actions, global config values or whole screens)
that is not available in the selected version of SBC

Compatibility
mode with
secunet SBC

If enabled, the firewall control and HA configuration screens will be hidden.

Allow overlap
of Call Agent
IP ranges

If enabled, GUI will not check whether ranges of IP addresses of call agents are same or
overlapped.

22.8. Miscellaneous Parameters 399

Chapter 23

Reference of Supported Codecs

This reference lists all supported codecs by ABC SBC.

• PCMU/8000

• G721/8000

• GSM/8000

• PCMA/8000

• g722/8000

• L16/32000

• L16/16000

• L16/8000

• G726-32/8000

• G726-24/8000

• G726-40/8000

• G726-16/8000

• G729/8000

• opus/48000

• isac/16000

• iLBC/8000

• speex/32000

• speex/16000

• speex/8000

• AMR/8000

400

Chapter 24

Glossary

3GPP 3rd Generation Partnership Project
AoR Address of Record
B2BUA Back to Back User Agent
BLF Busy Lamp Field
CA Call Agent
CDR Call Data Record / Call Detail Record
CPU Central Processing Unit
DNS Domain Name System
DoS Denial of Service
ENUM Electronic Number Mapping System
FQDN Fully Qualified Domain Name
HA High availability
IMI Internal Management Interface
IMS IP Multimedia Subsystem
IP Internet Protocol
ISUP ISDN User Part
MI Media Interface
NAT Network Address Translator
NIC Network Interface Card
NNI Network-Network Interface
PBX Private Exchange
PSTN Public Switched Telecommunication Network
REST Representational state transfer
RLM Realm
RTP Real-Time Transport Protocol
RTCP Real-Time Transport Control Protocol
SAP Session Announcement Protocol
SBC Session Border Controller
SCTP Stream Control Transport Protocol
SDP Session Description Protocol
SI Signaling interface
SIP Session Initiation Protocol
SNMP Simple Network Management Protocol
SST SIP Session Timers
SRV Service Record
STUN Session Traversal Utilities for NAT
TISPAN Telecommunications and Internet converged Services and Protocols for Advanced Networking
TCP Transport Control Protocol

continues on next page

401

FRAFOS ABC SBC Handbook, Release 5.3

Table 1 – continued from previous page

TLS Transport Level Security
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
UNI User-Network Interface
URI Universal Resource Indicator
VIP Virtual IP Address
VoIP Voice over IP
XMI External Management Interface

402

Index

R
RFC

RFC 1889, 6
RFC 2327, 6
RFC 2617, 111
RFC 2782, 100
RFC 2833, 117
RFC 3261, 6, 93, 114, 118, 139, 288
RFC 3263, 22, 25, 95, 100
RFC 3264, 119
RFC 3325, 108, 113, 288
RFC 3581, 9
RFC 3608, 288
RFC 3711, 169
RFC 3761, 166
RFC 3960, 114
RFC 4028, 277
RFC 4122, 156
RFC 4145, 125
RFC 4244, 118, 288
RFC 4347, 169
RFC 4474, 167
RFC 4733, 117
RFC 5242, 169
RFC 5245, 12
RFC 5359, 115
RFC 5389, 12, 169
RFC 5628, 9
RFC 5766, 12
RFC 5806, 118, 288
RFC 5853, 9
RFC 6044, 118
RFC 6062, 169
RFC 6140, 139, 164
RFC 6386, 169
RFC 6716, 169
RFC 7118, 169

403

	About the ABC Session Border Controller
	How to Start?
	Credits

	Release Notes
	Release Notes for ABC SBC version 5.3
	Release Notes for ABC Monitor version 5.3

	Introduction
	A Brief Introduction to History and Architecture of SIP
	What is a Session Border Controller (SBC)?
	General Behavior of SBCs
	General Deployment Scenarios of SBCs

	Do You Need an SBC?
	ABC SBC Networking Concepts
	Network Topology
	SBC Interfaces
	Call Agents
	Realms
	A-B-C rules

	Practical Guide to the ABC SBC
	Network Planning Guidelines
	Topology Model
	SBC Logic
	Security Policies
	Capacity planning
	IT Integration

	Planning Checklists
	A Typical SBC Configuration Example
	Identifying Network topology
	Describing ABC SBC Realms and Call Agents
	Configuring Registration Cache and Throttling
	SIP Routing
	Configuring NAT Handling and Media Anchoring
	Configuring transparent dialog IDs
	Setting up tracing
	Summary of rules
	Setting Call Limits
	Blacklisting specific IPs and User Agents
	Handling P-Asserted-Identity
	Where to go from here

	Installing the ABC SBC
	Types of Installations: Container and Cloud-based
	Hardware Requirements
	Deployment Modes
	Single Node Mode
	High Available (HA) Pair Mode
	Cluster based solution

	Installation Procedure
	Installation Procedure - systemd container ABC SBC install
	Unpack the container image
	Prepare directory for persistent data
	Create container systemd config file
	Optional: configure container network interface(s)
	Manage the containers
	Managing the containers under CentOS 7

	Installation Procedure - podman containers
	Installing podman
	OCI images download
	Networking
	Persistent data
	Container management
	Upgrade Procedure
	Systemd integration

	Initial Configuration
	SBC Interfaces Overview
	Web GUI Configuration (Cluster Config Master)

	Setting Up Web Interface Access and User Accounts
	Default User Accounts

	ABC SBC License
	Interface Configuration
	Physical and System Interfaces
	SBC Interfaces
	Retro Compatibility

	TLS profiles Configuration
	TLS profile options
	Certificate requirements
	Let’s encrypt gocertbot

	Hardware Specific Configurations
	Network adapters
	Configuration of SBC Number of Threads
	Configuration of sysctl settings

	Last ABC SBC Installation Steps
	ABC Monitor Installation (optional)
	ABC Monitor recommended server configuration

	ABC Monitor Container Installation
	ABC Monitor Initial Configuration

	ABC Monitor LDAP Installation (optional)
	ABC Monitor Installation Off AWS (optional)

	General ABC Configuration Guide
	Physical, System and SBC Interfaces
	Defining Rules
	Condition Types
	Condition Operators
	Condition Values and Regular Expressions
	Actions
	Additional rule properties

	Using Replacements in Rules
	Example Use of Replacement Expressions

	Using Regular Expression Backreferences in Rules
	Binding Rules together with Call Variables
	SIP Routing
	Routing Rules (B)
	Static Routes
	Table-based Dynamic Routes
	Request-URI Based Routes
	Determination of the IP destination and Next-hop Load-Balancing
	IP Blacklisting: Adaptive Availability Management
	SIP Routing by Example

	View A-B-C rules
	SIP Mediation
	Why is SIP Mediation Needed?
	Request-URI Modifications
	Changing Identity
	SIP Header Processing
	Early Media, Ring Back Tone and Forking
	Call transfers
	INVITE with Replaces handling
	Mapping Dialog-IDs in INVITEs with Replaces
	Other mediation actions

	SDP Mediation
	Codec Signaling
	Media Type Filtering
	CODEC Filtering
	CODEC Preference
	SDP Bandwidth attribute limiting

	Media Handling
	Introduction
	Media Anchoring (RTP Relay)
	RTP and SRTP Interworking
	SRTP End to End encryption
	Transcoding
	Audio Recording
	Playing Audio Announcements
	Onboard Conferencing

	NAT Traversal
	NAT Traversal Configuration Example

	Registration Caching and Handling
	Registration Handling Configuration Options
	Registrar off-load
	Registration Caching and Handling by Example
	Registration Agent

	Call Data Records (CDRs)
	CDRs Location
	CDR Format
	Access to CDRs
	Customized CDR Records

	Advanced Use Cases with Provisioned Data
	RESTful Interface
	Provisioned Tables
	ENUM Queries

	SIP-WebRTC Gateway
	WebRTC Network Architecture and Protocols
	WebRTC Network Configuration
	WebRTC Credentials Configuration
	WebRTC Rules Configuration
	WebRTC Interoperability Recommendations

	Amazon Elastic Cloud Configuration Cookbook
	Before you Start: Prerequisites and Important Warnings
	Quick Start Using Cloud Formation
	Quick Start: Launch Single Instance
	Updating License
	Introducing Geographic Dispersion
	Monitoring the Autoscaling Cluster Using CloudWatch
	Performance Recommendations

	Template parameters
	Definition of Template Parameter
	Set specific values for Template Parameters

	ABC SBC System administration
	User Management
	GUI User Management
	CLI User Management

	Server Administration
	Backup and Restore Operations
	ABC SBC Configuration Management
	ABC SBC Configuration Backup
	ABC SBC Recovery Procedure
	Manual Backup of the Complete SBC Configuration
	Manual Restore of the Complete SBC Configuration

	ABC Monitor Backup and Restore Operations
	ABC Monitor Configuration Backup
	ABC Monitor Configuration Restore

	How to setup a Semi-redundant CCM on ABC SBC
	Setup primary CCM node
	Setup backup CCM node
	Configure configuration snapshot backups
	Setup configuration backups transfer to backup CCM node
	Steps to make the backup CCM available in case of primary CCM node failure
	Steps to be done on SBC nodes to start using new CCM
	Additional steps and checks

	Upgrade Procedure
	Container ABC SBC upgrade
	ABC Monitor Upgrade Procedure

	Migration from 4.5/4.6 to 5.0
	ABC SBC migration procedure
	ABC Monitor migration procedure

	SBC Dimensioning and Performance Tuning
	Trunking Use Case
	Trunking with Transcoding
	Traffic Estimates for Residential VoIP
	Performance Tuning

	Removing SBC Node

	Monitoring and Troubleshooting
	Overview of Monitoring and Troubleshooting Techniques
	ABC Monitor (Optional)
	Events (optional)
	HOWTO Find a Needle in the Haystack: Iterative Event Filtering
	Using Filters
	Overview Dashboard
	Calls Dashboard
	Registration Dashboard
	Connectivity CA Dashboard
	Security Dashboard
	Exceeded Limits Dashboards
	System Dashboard
	Network and Statistics Dashboard
	Diagnostics Dashboard
	Monitor Troubleshooting

	Live ABC SBC Information
	Registration Cache
	Live Calls
	Destination Blacklists
	User Recent Traffic

	Using SNMP for Measurements and Monitoring
	General Statistics
	Statistics per Realm / Call Agent
	Call Agent destination status
	Interfaces statistic
	User Defined Counters
	SNMP traps
	Node Process Monitoring
	Node status report

	Command-line SBC Process Management
	Process Management using Systemd
	SEMS – the SIP and RTP processing Daemon
	REDIS – the Real-time Database

	Additional Sources of Diagnostics Information
	Viewing ABC SBC Logs
	Coredumps

	Securing SIP Networks using ABC SBC and ABC Monitor (optional)
	SIP Security Principles: Collect, Analyze and Police
	Police: Devising Security Rules in the ABC SBC
	Manual IP-layer Blocking
	Automatic IP Address Blocking
	Automatic Proactive Blocking: Greylisting
	Manual SIP Traffic Blocking
	Traffic Limiting and Shaping
	Call Duration Control

	Collect Events: Gathering Usage Data in the ABC Monitor
	Reporting Security Events
	Setting up Diagnostic Events

	Analyze: Finding Patterns in Events using the ABC Monitor
	Password Guessing Attacks
	Scanning Attacks
	Denial-of-Service Attacks
	Distributed Attacks
	Dial-out Attempts

	Practices for Devising Secure Rule-basis
	Topology Hiding
	Devising a secure rule-base

	Preview of Experimental Features
	Using Two-Factor Authentication for Users
	Prerequisites
	Rules for Two Factor Authentication Processing
	Rules for determining User Status and discriminating by it
	Routing Rule to Connect Two Factor Authentication Processing and User Discrimination
	Scenario Modifications

	AWS: Reputation Lists
	Setting Up ABC SBC for Use of Reputation List on AWS
	Setting Up ABC Monitor for Use of Reputation List on AWS

	Server Transaction limits
	Setting proper limits

	New restify CDR process
	CDRs Location
	CDRs configuration
	CDR Format

	Reference of Actions
	SIP Mediation
	SDP Mediation
	Monitoring and Logging
	Traffic Shaping
	Media Processing
	SIP Dropping
	Scripting
	Register Processing
	External Interaction
	NAT Handling
	Other
	Default Audio Files
	Join meet-me conference
	Meet-me set PIN audio prompts
	Two-Factor authentication

	Reference of Global Configuration Parameters
	AWS Parameters
	Backup Parameters
	CDR Parameters
	Event Parameters
	Eventbeat Parameters
	Firewall Parameters
	LDAP Parameters
	Lawful Interception Parameters
	Login
	Low-level Parameters
	Miscellaneous Parameters
	Meet-Me web conference Parameters
	System Monitoring Parameters
	System Monitoring LDAP access Parameters
	PCAP Parameters
	SEMS Parameters
	SIPREC Parameters
	SIP Parameters
	SRTP Parameters
	Syslog Parameters
	Signaling SSL
	RTP handling Parameters

	Reference of Log Level Parameters
	Debug log level per node or per system
	Per system
	Per node

	Reference of Call Agent Configuration Parameters
	Destination Monitor Parameters
	Blacklisting Parameters
	Registration Agent Parameters
	Topology Hiding Parameters
	Firewall Blacklisting Parameters
	Security Parameters
	SIP Timer Parameters

	Reference of Default Port Numbers
	Reference Interface Parameters
	Reference Application Interface Options
	SSH
	Media
	Signaling
	WebSocket signaling
	SNMP
	Prometheus Pull Service
	TURN server for websocket
	PCAP query service
	Local monitoring query service
	Management for host
	Local webconf API
	Log files provider
	HTTP proxy
	HTTP redirect
	Call state HA replication

	Command Line Reference
	Configuration Management
	User Management
	Low-Level CLI
	HA CLI
	ABC Monitor Configuration Management

	Reference of Used Open-Source Software
	Reference Userdata Parameters for AWS Instances
	Reference XML-RPC functions
	Provisioned Tables
	Call agents
	TLS profiles
	Nodes
	Logical interfaces
	System interfaces
	Maintenance mode

	Reference of CCM Configuration Parameters
	Login
	LDAP Parameters
	Backup Parameters
	Management access Parameters
	SBC to CCM authentication Parameters
	Email Parameters
	Certbot Parameters
	Miscellaneous Parameters

	Reference of Supported Codecs
	Glossary
	Index

